Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quenching charge-transfer

Quenching is the reduction in fluorescence intensity and can be caused by various processes. It occurs either during the lifetime of the excited state or in the ground state. Quenching processes that happen in the excited state are collisional quenching, charge transfer reactions, or energy transfer. The latter is the basis for FRET probes but the other events happen as well under certain conditions and it is important to consider them. [Pg.252]

MEH-PPV and P3MBET, were used. As a measure of the efficiency of the photo-induced charge transfer, the degree of luminescence quenching and the ratio of the charged photoexcitation bands to the neutral photoexcitation bands were taken. These two numbers are plotted in Figure 15-15 versus the electrochemical reduction potential. A maximum in the photoinduced electron transfer was determined for Cbo. [Pg.593]

The reaction between the photoexcited carbonyl compound and an amine occurs with substantially greater facility than that with most other hydrogen donors. The rate constants for triplet quenching by amines show little dependence on the amine a-C-H bond strength. However, the ability of the amine to release an electron is important.- - This is in keeping with a mechanism of radical generation which involves initial electron (or charge) transfer from the amine to the photoexcited carbonyl compound. Loss of a proton from the resultant complex (exciplex) results in an a-aminoalkyl radical which initiates polymerization. The... [Pg.102]

M.L) it may be a MMCT state (see text). The arrow indicates the nonradiative transition from the charge-transfer state d to the ground state, so that c b and c - a emission is quenched... [Pg.183]

The acetone-sensitized photodehydrochlorination of 1,4-dichlorobutane is not suppressed by triplet quenchers (20), but the fluorescence of the sensitizer is quenched by the alkyl chloride (13). These observations imply the operation of a mechanism involving collisional deactivation, by the substrate, of the acetone excited singlet state (13,21). This type of mechanism has received strong support from another study in which the fluorescence of acetone and 2-butanone was found to be quenched by several alkyl and benzyl chlorides (24). The detailed mechanism for alkanone sensitization proposed on the basis of the latter work invokes a charge-transfer (singlet ketone)-substrate exciplex (24) and is similar to one of the mechanisms that has been suggested (15) for sensitization by ketone triplets (cf. Equations 4 and 5). [Pg.200]

Callis PR, Vivian JT (2003) Understanding the variable fluorescence quantum yield of tryptophan in proteins using QM-MM simulations. Quenching by charge transfer to the peptide backbone. Chem Phys Lett 369 409-414... [Pg.328]

Fig. 3 Transient spectra obtained upon the application of a 200-fs laser pulse to a solution of stilbene (S) and chloranil (Q) in dioxane. (a) The fast decay ( 20 ps) of the contact ion-radical pair S+ , Q generated by direct charge-transfer excitation (CT path), (b) The slow growth ( 1.6 ns) of the ion pair S+ Q due to the diffusional quenching of triplet chloranil (A path) as described in Scheme 13. Reproduced with permission from Ref. 55. Fig. 3 Transient spectra obtained upon the application of a 200-fs laser pulse to a solution of stilbene (S) and chloranil (Q) in dioxane. (a) The fast decay ( 20 ps) of the contact ion-radical pair S+ , Q generated by direct charge-transfer excitation (CT path), (b) The slow growth ( 1.6 ns) of the ion pair S+ Q due to the diffusional quenching of triplet chloranil (A path) as described in Scheme 13. Reproduced with permission from Ref. 55.
Electron-transfer activation. Both charge-transfer (CT) photolysis as well as the diffusional quenching of photoexcited chloranil with pinacol donors occur via a reactive ion pair as the common intermediate (equation 57). [Pg.255]

A. Weller and K. Zachariasse 157-160) thoroughly investigated this radical-ion reaction, starting from the observation that the fluorescence of aromatic hydrocarbons is quenched very efficiently by electron donors such as N,N diethylaniline which results in a new, red-shifted emission in nonpolar solvents This emission was ascribed to an excited charge-transfer complex 1(ArDD(H )), designated heteroexcimer, with a dipole moment of 10D. In polar solvents, however, quenching of aromatic hydrocarbon fluorescence by diethylaniline is not accompanied by hetero-excimer emission in this case the free radical anions Ar<7> and cations D were formed. [Pg.123]


See other pages where Quenching charge-transfer is mentioned: [Pg.80]    [Pg.80]    [Pg.265]    [Pg.236]    [Pg.126]    [Pg.455]    [Pg.470]    [Pg.538]    [Pg.1072]    [Pg.163]    [Pg.165]    [Pg.1072]    [Pg.157]    [Pg.233]    [Pg.391]    [Pg.393]    [Pg.80]    [Pg.84]    [Pg.87]    [Pg.89]    [Pg.94]    [Pg.95]    [Pg.96]    [Pg.129]    [Pg.108]    [Pg.269]    [Pg.542]    [Pg.210]    [Pg.43]    [Pg.192]    [Pg.9]    [Pg.941]    [Pg.254]    [Pg.328]    [Pg.245]    [Pg.256]    [Pg.109]    [Pg.77]    [Pg.15]    [Pg.15]    [Pg.160]    [Pg.169]    [Pg.165]   
See also in sourсe #XX -- [ Pg.208 ]




SEARCH



Charge transfer self-quenching mechanism

© 2024 chempedia.info