Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Disulfoton inhibition

Disulfoton and its breakdown products can be measured in the blood, urine, feces, liver, kidney, or body fat of exposed people. In cases of occupational or accidental exposure to disulfoton, the breakdown products are often measured in the urine. The breakdown products are relatively specific for disulfoton and a few other similar organophosphate pesticides and can be detected in urine for up to one week after people were last exposed. Because disulfoton inhibits cholinesterase in blood and in blood cells, inhibition of this enzyme activity may also suggest exposure to disulfoton. Cholinesterase activity in blood and in blood cells may remain inhibited for as long as 1-2 weeks after the last exposure. Because other organophosphate pesticides also inhibit cholinesterase activity in blood and blood cells, this test is not specific for disulfoton. The measurement of cholinesterase in blood and blood cells and the amount of disulfoton breakdown products in the urine cannot always predict how much disulfoton you were exposed to. Your doctor can send samples of your blood or urine to special laboratories that perform these tests. Chapters 2 and 6 provide more information about medical tests. [Pg.15]

Exposure to disulfoton can result in inhibition of acetylcholinesterase activity, with consequent accumulation of acetylcholine at nerve synapses and ganglia leading to central nervous system, nicotinic, and muscarinic effects (see Section 2.2.1.4 for more extensive discussion). [Pg.76]

Disulfoton causes neurological effects in humans and animals. The mechanism of action on the nervous system depends on the metabolism of disulfoton to active metabolites. The liver is the major site of metabolic oxidation of disulfoton to disulfoton sulfoxide, disulfoton sulfone, demeton S-sulfoxide and demeton S-sulfone, which inhibit acetylcholinesterase in nervous tissue. These four active metabolites are more potent inhibitors of acetylcholinesterase than disulfoton. Cytochrome P-450 monooxygenase and flavin adenine dinucleotide monooxygenase are involved in this metabolic activation. The active metabolites ultimately undergo nonenzymatic and/or enzymatic hydrolysis to more polar metabolites that are not toxic and are excreted in the urine. [Pg.90]

No studies were located regarding absorption in humans or animals after dermal exposure to disulfoton. However, data on lethality, other signs of toxicity, and acetylcholinesterase inhibition in animals after dermal exposure (see Section 2.2.3) suggest that disulfoton can be absorbed from the skin. [Pg.92]

The MRL is based on a NOAEL of 0.5 mg/m3 for decreased acetylcholinesterase activity in rats exposed to disulfoton 4 hours/day for 5 days in a study by Thyssen (1978). The NOAEL was adjusted for intermittent exposure, converted to a human equivalent concentration, and divided by an uncertainty factor of 30 (3 for extrapolation from animals to humans and 10 for human variability). Inhibition of erythrocyte cholinesterase activity and unspecified behavioral disorders were observed at 1.8 mg/m, and unspecified signs of cholinergic toxicity were observed at 9.8 mg/m. Similar effects were observed in rats or mice exposed to higher concentrations for shorter duMtions (Doull 1957 Thyssen 1978). The NOAEL value of 0.5 mg/m is supported by another study, in which no significant decrease in the activity of brain, serum, or submaxillary gland cholinesterase was found in rats exposed to 0.14-0.7 mg/m for 1 hour/day for 5-10 days (DuBois and Kinoshita 1971). Mild depression of erythrocyte cholinesterase activity was reported in workers exposed by the inhalation and dermal routes (Wolfe et al. 1978). [Pg.101]

Respiratory Effects. Information on respiratory effects due to exposure to disulfoton is very limited. Exposure to disulfoton causes overstimulation of the muscarinic cholinergic receptors in the respiratory tract (Murphy 1986). This usually results in excessive bronchial secretions, bronchoconstriction, and eventually respiratory failure. Pulmonary edema and hemoptysis were recognized as probable causes of death in a man who ingested an unknown amount of disulfoton (Hattori et al. 1982). Studies regarding inhalation exposure were concerned primarily with lethality or cholinesterase inhibition. However, in intermediate-duration inhalation studies in rats, inflammation... [Pg.104]

The inhibition of T-lymphocyte acetylcholinesterase activity paralleled that in the brain. Similar results were found in rats injected intraperitoneally with 2 mg/kg/day disulfoton for 2 weeks (Costa et al. [Pg.108]

Inhibition of erythrocyte acetylcholinesterase activity or serum cholinesterase activity with or without concomitant neurological signs is usually a good indicator of organophosphate exposure. In addition, T-lymphocyte acetylcholinesterase activity was found to be rapidly and greatly depressed in rats during a 14-day daily exposure to disulfoton, but rapidly recovered after exposure (Fitzgerald... [Pg.121]

Because cholinesterase inhibition is a very sensitive biomarker for other chemicals, it is not always conclusive evidence of disulfoton exposure. However, depression of cholinesterase activity can alert a physician to the possibility of more serious neurological effects. Erythrocyte acetylcholinesterase activity more accurately reflects the degree of synaptic cholinesterase inhibition in nervous tissue, while serum cholinesterase activity may be associated with other sites (Goldfrank et al. 1990). In addition, a recent study showed that after rats received oral doses of disulfoton for 14 days, acetylcholinesterase levels in circulating lymphocytes correlated better with brain acetylcholinesterase activity than did erythrocyte cell cholinesterase activities during exposure (Fitzgerald and Costa 1993). However, recovery of the activity in lymphocytes was faster than the recovery of activity in the brain, which correlated better with the activity in erythrocytes. Animal studies have also demonstrated that brain acetylcholinesterase depression is a sensitive indicator of neurological effects (Carpy et al. 1975 Costa et al. 1984 Schwab and Murphy 1981 Schwab et al. 1981, 1983) however, the measurement of brain acetylcholinesterase in humans is too invasive to be practical. [Pg.123]

Increased levels of urinary catecholamines may also be associated with accumulation of acetylcholine that resulted from acetylcholinesterase inhibition by disulfoton. No human data were located to support this, but limited animal data provide some evidence. Disulfoton exposure caused a 173% and 313% increase in urinary noradrenaline and adrenaline levels in rats, respectively, within 72 hours (Brzezinski 1969). The major metabolite of catecholamine metabolism, HMMA, was also detected in the urine from rats given acute doses of disulfoton (Wysocka-Paruszewska 1971). [Pg.123]

Cross-tolerance between disulfoton and another organophosphate, chlorpyrifos, was observed in mice (Costa and Murphy 1983b). Because of this cross-tolerance, a benefit is derived as a result of this interaction. In the same study, propoxur-tolerant mice were tolerant to disulfoton but not vice versa. Propoxur (a carbamate) is metabolized by carboxylesterases, and these enzymes are inhibited in disulfoton-tolerant animals disulfoton-tolerant animals are more susceptible to propoxur and/or carbamate insecticides than are nonpretreated animals. In another study, disulfoton-tolerant rats were tolerant to the cholinergic effects of octamethyl pyrophosphoramide (OMPA) but not parathion (McPhillips 1969a, 1969b). The authors were unable to explain why the insecticides OMPA and parathion caused different effects. [Pg.125]


See other pages where Disulfoton inhibition is mentioned: [Pg.14]    [Pg.109]    [Pg.136]    [Pg.343]    [Pg.14]    [Pg.109]    [Pg.136]    [Pg.343]    [Pg.14]    [Pg.32]    [Pg.34]    [Pg.34]    [Pg.76]    [Pg.77]    [Pg.77]    [Pg.77]    [Pg.78]    [Pg.78]    [Pg.79]    [Pg.89]    [Pg.90]    [Pg.95]    [Pg.95]    [Pg.100]    [Pg.100]    [Pg.100]    [Pg.102]    [Pg.102]    [Pg.103]    [Pg.106]    [Pg.108]    [Pg.109]    [Pg.110]    [Pg.110]    [Pg.113]    [Pg.123]    [Pg.124]    [Pg.127]    [Pg.131]    [Pg.131]    [Pg.132]    [Pg.133]    [Pg.134]   
See also in sourсe #XX -- [ Pg.258 ]




SEARCH



Disulfoton

© 2024 chempedia.info