Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distillation dew point

Note that the distillate dew-point and bottoms boiling-point estimation is partially trial and error, since the distribution of the other components in the distillate and bottoms is not known and can affect these values. [Pg.683]

The a s are all computed at the average of the distillate dew point and the residue bubble point, which may require a few trial estimates. The method has been extended to columns with multiple feeds [2]. [Pg.436]

The distillate dew point computes to be 46.3 C and the residue bubble point 113 C. The assumed 46 and 114 C are close enough. [Pg.440]

A third fundamental type of laboratory distillation, which is the most tedious to perform of the three types of laboratory distillations, is equilibrium-flash distillation (EFV), for which no standard test exists. The sample is heated in such a manner that the total vapor produced remains in contact with the total remaining liquid until the desired temperature is reached at a set pressure. The volume percent vaporized at these conditions is recorded. To determine the complete flash curve, a series of runs at a fixed pressure is conducted over a range of temperature sufficient to cover the range of vaporization from 0 to 100 percent. As seen in Fig. 13-84, the component separation achieved by an EFV distillation is much less than by the ASTM or TBP distillation tests. The initial and final EFN- points are the bubble point and the dew point respectively of the sample. If desired, EFN- curves can be established at a series of pressures. [Pg.1326]

Underwood minimum reflux constant XjF = Mol fraction of component i in the feed XjD = Mol fraction of component i in the distillate q = Thermal condition of the feed Bubble point liquid q =1.0 Dew point vapor q =0 General feed q = (Ls - Lr)/F... [Pg.52]

First, the old standby methods of checking the overall individual component balances and checking dew and bubble points will help verify distillate and bottoms concentrations. The total overhead (distillate plus reflux) calculated dew point is compared to the column overhead observed temperature and the bottoms calculated bubble point is compared to the column bottom observed temperature. If the analyses are not felt to be grossly in eiTor. the following method wfill also prove very helpful. [Pg.306]

Since the boiling point properties of the components in the mixture being separated are so critical to the distillation process, the vapor-liquid equilibrium (VLE) relationship is of importance. Specifically, it is the VLE data for a mixture which establishes the required height of a column for a desired degree of separation. Constant pressure VLE data is derived from boiling point diagrams, from which a VLE curve can be constructed like the one illustrated in Figure 9 for a binary mixture. The VLE plot shown expresses the bubble-point and the dew-point of a binary mixture at constant pressure. The curve is called the equilibrium line, and it describes the compositions of the liquid and vapor in equilibrium at a constant pressure condition. [Pg.172]

Calcium chloride is the most common nonregenerative reagent used to dry low molecular weight refinery streams to moderately low dew points. Anhydrous potassium or sodium hydroxide have also been used at times to dry liquefied petroleum gas. Sodium chloride is used most commonly to remove entrained and some soluble water from middle distillate streams. [Pg.97]

In a total condenser all of the overhead vapor is condensed to the liquid state. When the heat load or duty on the condenser is exactly equal to the latent heat of the saturated or dew point of the overhead vapor from the distillation column, the condensed liquid will be a saturated bubble point liquid. The condenser and accumulator... [Pg.19]

This system requires direct steam injection into the still with the liquid, all the steam leaves overhead with the boiled-up vapors (no internal condensation) in a steady-state operation, and system at its dew point. Steam is assumed immiscible with the organics. Steam distillation is usually applied in systems of high boiling organics, or heat sensitive materials which require separation at vacuum conditions. [Pg.59]

Determine top tray temperature for use in relative volatility calculations by running a dew point on the overhead rapor. For total condenser its composition is same as distillate product. For a partial condenser, run a dew point on the column overhead vapor composition as determined by a material balance around the partial condenser, reflux, and product. [Pg.89]

The purpose of this chapter is to explain what is meant by the terms bubble point and dew point, and how we can use these ideas to improve the operation of the distillation tower. To begin, we will derive the bubble-point equation, from the basic statement of vapor-liquid equilibrium ... [Pg.107]

Dew-point measurement is a primary method based on fundamental thermodynamics principles and as such does not require calibration. However, the instrument performance needs to be verified using salt standards and distilled water before sampling (see Support Protocol). To obtain accurate and reproducible water activity results with a dew-point instrument, temperature, sensor cleanliness, and sample preparation must be considered. Equipment should be used and maintained in accordance with the manufacturer s instruction manual and with good laboratory practice. If there are any concerns, the manufacturer of the instrument should be consulted. Guidelines common to dew-point instruments for proper water activity determinations are described in this protocol. The manufacturer s instructions should be referred to for specifics. [Pg.42]

The processes used in industrial air-separation plants have changed very little in basic principle during the past 25 years. After cooling the compressed air to its dew point in a main heat exchanger by flowing counter current to the products of separation, the air feed, at an absolute pressure of about 6 MPa, is separated in a double distillation column. This unit is kept cold by refrigeration developed in a turbine, which expands a flow equivalent to between 8 and 15% of the air-feed stream down to approximately atmospheric pressure. [Pg.180]

Figure 10 shows the relationship between yx and xx for different values of an calculated from Eq. (8). When two components have close boiling points, by implication they have similar vapor pressures, so that an is close to unity. Separation of mixtures by distillation becomes more difficult as an approaches unity. Figure 11 indicates some of the x, y diagrams that can be obtained for distillation systems. Also shown are corresponding temperature-composition diagrams. The saturated vapor or dewpoint curve is determined by finding the temperature at which liquid starts to condense from a vapor mixture. Similarly, the saturated liquid or bubble-point curve corresponds to the temperature at which a liquid mixture starts to boil. For ideal mixtures, the dewpoint and bubble-point curves can be calculated as follows. From Eq. (3), at the dew point, since... [Pg.228]

A computer algorithm has been developed for making multi-component mixture calculations to predict (a) thermodynamic properties of liquid and vapor phases (b) bubble point, dew point, and flash conditions (c) multiple flashes, condensations, compression, and expansion operations and (d) separations by distillation and absorption. [Pg.338]

Most of the energy is consumed in the distillation section, namely for VAM recovery and purification. The reboiler duty for the azeotropic distillation of VAM is particularly high, of about 30 MW. It can be observed that this is due to the large recycle of VAM necessary to carry out the water formed by reaction (3 mole VAM per mol water). Thus, any measure is welcome that can reduce the water content in the crude VAM/acetic acid mixture. Figure 10.8 shows an ingenious method known as gas dehydration [1]. The reactor outlet, cooled up to the dew point,... [Pg.304]

A similar representation is based on distillation tines [1], which describe the composition on successive trays of a distillation column with an infinite number of stages at infinite reflux (°°/°° analysis). In contrast with relation (A.8) the distillation lines may be obtained much easier by algebraic computations involving a series of bubble and dew points, as follows ... [Pg.464]

When the liquid starts to boil at temperature 7 (point B), the first vapor formed has a composition yx and is therefore at its dew point, At thia point, the vapor is as rich in the light component as it will ever be. As temperature is further raised, more of the heavier component is boiled off. The quantity of vapor formed increases, but the mole fraction of the light component in both vapor and liquid drops. At temperature T2, the liquid composition is x2 and the vapor composition is y2. Some of the initial charge is now vapor and some is liquid. A further increase in temperature to Ta will vaporize the rest of the liquid. The vapor composition will now be xlt and the last drop of liquid vaporized has a composition x3, The liquid always travels along its bubble-point curve (BEH) while the vapor always travels along the dew-point curve iDFG), Therefore, in distillation, bubble-point liquid is always in equilibrium with dew-point vapor. [Pg.12]

Px relation of Raoult s law, and the system therefore exhibits negative deviations. When the deviations become sufficiently large relative to the difference between the two pure-species vapor pressures, the Px curve exhibits a minimum, as illustrated in Fig. 12.96 for the chloroform/tetrahydrofuran system at 30°C. This figure shows that the Py curve also has a minimum at the same point. Thus at this point where x - y the dew-point and bubble-point curves are tangent to the same horizontal line. A boiling liquid of this composition produces a vapor of exactly the same composition, and the liquid therefore does not change in composition as it evaporates. No separation of such a constant-boiling solution is possible by distillation. The term azeotrope is used to describe this state. [Pg.476]

Thermodynamic calculations are used to evaluate vapor-liquid equilibrium constants, enthalpy values, dew points, bubble points, and flashes. Established techniques simulate the heat exchangers and distillation columns, and handle convergence and optimization. [Pg.263]


See other pages where Distillation dew point is mentioned: [Pg.444]    [Pg.441]    [Pg.111]    [Pg.444]    [Pg.441]    [Pg.111]    [Pg.565]    [Pg.457]    [Pg.76]    [Pg.327]    [Pg.1283]    [Pg.171]    [Pg.497]    [Pg.427]    [Pg.496]    [Pg.229]    [Pg.55]    [Pg.475]    [Pg.48]    [Pg.475]    [Pg.40]    [Pg.258]    [Pg.307]    [Pg.171]    [Pg.476]    [Pg.1106]   
See also in sourсe #XX -- [ Pg.241 ]




SEARCH



Dew point

Dewing

© 2024 chempedia.info