Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dissociation constant Oxides

Table 1 6 VSEPR and Molecular Geometry Table 1 7 Dissociation Constants (pK ) of Acids Table 2 5 Oxidation Numbers in Compounds with More Than One Carbon... Table 1 6 VSEPR and Molecular Geometry Table 1 7 Dissociation Constants (pK ) of Acids Table 2 5 Oxidation Numbers in Compounds with More Than One Carbon...
A more concentrated solution of HOBr can be prepared by filtration of one of the above solutions and distillation in vacuum. Or the mercuric oxide reaction can be carried out in Freon 11 without water, yielding a solution of bromine monoxide which is filtered and hydrolyzed. Hypobromous acid is slightly ionized its dissociation constant at 25°C is 2 x 10 . ... [Pg.293]

The oxo-anions of chlorine are weaker oxidants than the corresponding acids. Because they are also more stable, it is not too difficult to isolate certain salts of those acids that can be obtained only in aqueous solution. Hypochlorites and chlorites are hydroly2ed in aqueous solution since HOCl and HCIO2 have acid dissociation constants of 10 and 10 , respectively however, aqueous chloric and perchloric acids are hiUy iorrhed. [Pg.464]

Salts are obtained by direct neutralization of the acid with appropriate oxides, hydroxides, or carbonates. Sulfamic acid is a diy, non-volatile, non-hygroscopic, colourless, white, crystalline solid of considerable stability. It melts at 205°, begins to decompose at 210°, and at 260° rapidly gives a mixture of SO2, SO3, N2, H2O, etc. It is a strong acid (dissociation constant 1.01 x 10 at 25° solubility 25gper 100g H2O) and, because of its physical form and stability, is a convenient standard for acidimetry. Over 50000 tonnes are manufactured annually and its principal applications are in formulations for metal cleaners, scale removers, detergents and stabilizers for chlorine in aqueous solution. [Pg.742]

The methods outlined, of course, are readily applicable to a wide variety of substituted heterocycles like the carboxyl, hydroxy and mercapto derivatives of pyridines, pyridine 1-oxides, pyrroles, etc. The application to amines and to diaza compounds such as pyrimidine, where the two centers are basic, is obvious except that now 23 takes the role of the neutral compound, 21 and 22 the roles of the tautomeric first conjugate bases, and 20 the role of the second conjugate base. Extensions to molecules with more than two acidic or basic centers, such as aminonicotinic acid, pyrimidinecarboxylic acids, etc., are obvious although they tend to become algebraically cumbersome, involving (for three centers) three measurable Kg s, four Ay s, and fifteen ideal dissociation constants (A ), a total of twenty-two constants of which seven are independent. [Pg.258]

On studying a series of ammonium 1,3,2,5-dioxaborataphosphorinane oxides (111), the dependence of the tautomeric equilibrium position on amine basicity was analyzed. The equilibrium position was estimated from chemical shift values of bis(oxymethyl)phenylphosphine oxide with 8 3IP of 35 ppm being used as a model of an acyclic form and 5-Ph-5-oxo-1,3,5-dioxaphosphorinane (107, R = H) with 8 3IP of 6 ppm used as a model of a cyclic compound. The chemical shift values (111, X = 0, R = H) and dissociation constants (pKa) of conjugate acids for amines are presented in Table V. [Pg.99]

In Table 15 are recorded the dissociation constants of certain phenolic compounds. From these data it becomes obvious that the introduction of aldehyde groups, or other substituents, changes the dissociation constant of phenolic hydroxyls by over one-hundred fold. Moreover, oxidation studies carried out in this laboratory have shown that the native lignins from bagasse, white Scots pine and birch contain... [Pg.97]

Br0nsted-Lowery acids are H+ donors and bases are H+ acceptors. Strong acids dissociate completely in water. Weak acids only partially dissociate, establishing an equilibrium system. Weak acid and base dissociation constants (Ka and Kb) describe these equilibrium systems. Water is amphoteric, acting as both an acid or a base. We describe water s equilibrium by the Kw expression. A pH value is a way of representing a solution s acidity. Some salts and oxides have acid-base properties. A Lewis acid is an electron pair acceptor while a Lewis base is an electron pair donor. [Pg.232]

Acid centers, structure, sulfate-supported metal oxides, 37 192-196 Acidic catalysis, 6 241 montmorillonite, 38 266-268 Acidic dissociation constant, probe molecules, 38 210... [Pg.37]

The attempt to use these salts originated from the hope that their dissociation constants would be high even in low dielectric media, and the organic nature of perfluorinated alkyls would always assist the solubility of the salts in nonaqueous solvents. Because of the requirement for electrochemical stability, lithium carboxylates (RF-C02Li, where Rp- = perfluorinated alkyls) are excluded from consideration, because their oxidation still occurs at - 3.5 V vs lithium, which is similar to the cases of their non-fluorinated counterparts. Obviously, the electron-withdrawing groups do not stabilize the carboxylate anions sufficiently to alter their oxidative stability. [Pg.74]

Irradiation of an aqueous solution at 296 nm and pH values from 8 to 13 yielded different products. Photolysis at a pH nearly equal to the dissociation constant (undissociated form) yielded pyrocatechol. At an elevated pH, 2-chlorophenol is almost completely ionized photolysis yielded cyclopentadienic acid (Boule et al., 1982). Irradiation of an aqueous solution at 296 nm containing hydrogen peroxide converted 2-chlorophenol to catechol and 2-chlorohydroquinone (Moza et al, 1988). In the dark, nitric oxide (10 vol %) reacted with 2-chlorophenol forming 4-nitro-2-chlorophenol and 6-nitro-2-chlorophenol at yields of 36 and 30%, respectively (Kanno and Nojima, 1979). [Pg.305]

Mb. Subsequent application of this technique to reduction of various derivatives of reduced and oxidized myoglobin led to the observation that the rate of reduction by hydrated electrons depends primarily on the net charge of the protein and the dissociation constant for formation of ligand bound derivatives of metMb. [Pg.17]

Using the spectral data of Fig. 22, and similar data obtained for the nitrophorins in the absence of NO and in the presence of histamine, imidazole, or 4-iodopyrazole, Nernst plots such as that shown in the insert of Fig. 22 were constructed, and the midpoint potentials of the nitrophorins and their NO and histamine complexes were calculated. The results are summarized in Table IV, where they are compared to those obtained earlier for NPl (49, 50, 55). All potentials are expressed vs NHE (+205 mV with respect to the Ag/AgCl electrode used in the spectroelectrochemical titrations and the Nernst plot shown in the insert of Fig. 22). It can be seen that the reduction potentials of all four nitrophorins in the absence of NO or histamine are within 20-40 mV of each other. The reduction potentials of their NO complexes, however, differ significantly from each other. For example, the reduction potential of NP4-NO is about 350 mV more positive than that of NP4 in the absence of NO, as compared to a 430 mV shift for NPl upon binding NO, and the positive shifts for NP2—NO and NP3—NO are somewhat smaller (318 and 336 mV, respectively, at pH 7.5) 49, 50). These differences relate to the ratios of the dissociation constants for the two oxidation states, as discussed later. [Pg.347]

However, EU2O3 behaves as an amphoteric oxide and dissociates according to the two reaction schemes already proposed for all trivalent REE (cf. eq. 10.37 and 10.38). Denoting and respectively, as the acidic and basic dissociation constants, the Eu /Eu oxidation ratio varies with the silica amount in the melt (1 - Xmo) according to... [Pg.679]

Fig. 7 Mobility-shift assay for the determination of dissociation constant of the complex between anti-DNP rat monoclonal IgG21) antibody and charged ligands that contained the A-dinitrophenyl group. Mesityl oxide (MO) served as EOF marker, bovine carbonic anhydrase (CAB) and bovine a-lactalbumin (LA) as internal references. The DNP ligands with a charge of —1 (A) und —9 (B), respectively, were used as additives to the running buffer. (Reprinted with permission from Ref. 30. Copyright 1995 American Chemical Society.)... Fig. 7 Mobility-shift assay for the determination of dissociation constant of the complex between anti-DNP rat monoclonal IgG21) antibody and charged ligands that contained the A-dinitrophenyl group. Mesityl oxide (MO) served as EOF marker, bovine carbonic anhydrase (CAB) and bovine a-lactalbumin (LA) as internal references. The DNP ligands with a charge of —1 (A) und —9 (B), respectively, were used as additives to the running buffer. (Reprinted with permission from Ref. 30. Copyright 1995 American Chemical Society.)...
Phosphoric acid is a tribasic acid. It is not an oxidizing acid. In aqueous solution phosphoric acid dissociates to H2PO4, HP042 and POs ions. The dissociation constants are as follows ... [Pg.699]

Tetrakis(triethylphosphine)platinum(0) is extremely air sensitive and readily soluble in saturated aliphatic hydrocarbons. The complex can be stored under dry nitrogen in a freezer (-35°) for several months. The complex readily loses one of the coordinated phosphine molecules to give Pt(PEt3)36 (dissociation constant (K ) in heptane is 3.0 X 10" ). The H NMR spectrum measured in benzene-d6 shows two multiplets at 5 1.56 (CH2) and 1.07 ppm (CH3). Tetrakis-(triethylphosphine)platinum(O) is a strong nucleophile and reacts readily with chlorobenzene and benzonitrile to give a-phenyl complexes PtX(Ph)(PEt3)2 (X = Cl, CN).7 Oxidative addition of EtOH affords [PtH(PEt3)3] +. [Pg.111]


See other pages where Dissociation constant Oxides is mentioned: [Pg.510]    [Pg.591]    [Pg.424]    [Pg.781]    [Pg.782]    [Pg.373]    [Pg.37]    [Pg.12]    [Pg.14]    [Pg.394]    [Pg.16]    [Pg.358]    [Pg.187]    [Pg.132]    [Pg.240]    [Pg.484]    [Pg.299]    [Pg.349]    [Pg.350]    [Pg.352]    [Pg.417]    [Pg.161]    [Pg.224]    [Pg.9]    [Pg.698]    [Pg.350]    [Pg.704]    [Pg.448]   
See also in sourсe #XX -- [ Pg.230 , Pg.241 ]




SEARCH



Dissociations, oxides

Oxidation dissociated

© 2024 chempedia.info