Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Displacement hydrazine

Hydroxyl Group. The OH group of cyanohydrins is subject to displacement with other electronegative groups. Cyanohydrins react with ammonia to yield amino nitriles. This is a step in the Strecker synthesis of amino acids. A one-step synthesis of a-amino acids involves treatment of cyanohydrins with ammonia and ammonium carbonate under pressure. Thus acetone cyanohydrin, when heated at 160°C with ammonia and ammonium carbonate for 6 h, gives a-aminoisobutyric acid [62-57-7] in 86% yield (7). Primary and secondary amines can also be used to displace the hydroxyl group to obtain A/-substituted and Ai,A/-disubstituted a-amino nitriles. The Strecker synthesis can also be appHed to aromatic ketones. Similarly, hydrazine reacts with two molecules of cyanohydrin to give the disubstituted hydrazine. [Pg.411]

Reactive halogens in various series have been removed by catalytic hydrogenation with either platinum or palladium catalysts, and other nucleophiles which have been used in chloride displacements include hydroxide ion, alkoxides, hydrosulflde, hydrazine and toluene-p-sulfonylhydrazine, and trimethyl phosphite. [Pg.214]

An ingenious synthesis of 1-arylisoindolcs has been developed by Vebor and Lwowski, based upon the reaction of an o-phthalimido-methylbenzophenone (41, R = aryl) with hydrazine (Table IV). The benzophenone is prepared by a Friedel-Crafts reaction with o-phthalimidomethylbenzoyl chloride (40). The mechanism of isoindole formation can be represented sehematically by a sequence involving attack by hydrazine at the imide to give the ring-opened hj drazide (42), followed by cyclization to phthalazine-l,4-dione (44) with displacement of the o-aminomethylbenzophenone (43). Intramolecular condensation of the latter can lead, via the isoindolenine... [Pg.123]

Relatively little work has been done on displacement of the azido group on benzenes ° (by hydroxide, ammonia, amines, or hydrazine) or on heterocycles. The latter involve reaction of... [Pg.208]

Alkylthio, arylthio, and thioxo. The thioxo group in pyrimidine-2,4-dithione can be displaced by amines, ammonia, and amine acetates, and this amination is specific for the 4-position in pyrimidines and quinazolines. 2-Substitution fails even when a 5-substituent (cf. 134) sterically prevents reaction of a secondary amine at the 4-position. Acid hydrolysis of pyrimidine-2,4-dithione is selective at the 4-position. 2-Amination of 2-thiobarbituric acid and its /S-methyl derivative has been reported. Under more basic conditions, anionization of thioxo compounds decreases the reactivity 2-thiouracil is less reactive toward hot alkali than is the iS-methyl analog. Hydrazine has been reported to replace (95°, 6 hr, 65% 3deld) the 2-thioxo group in 5-hexyl-6-methyl-2-thiouracil. Ortho and para mercapto- or thio- azines are actually in the thione form. ... [Pg.213]

Sulfonate and sulfamoyl. A nitrile group is introduced into the 3- or 4-position of pyridine and into the 2- or 4-position of pyrimidine by displacement of a sulfonate group with potassium cyanide. Amines, water, or hydrazine displace 2- or 4-sulfonate groups from pyridine derivatives. 4-Quinolinylsulfonates (139)... [Pg.214]

Chloro-5,6-diphenyl-as-triazine readily undergoes methoxy-de-chlorination at 25° (< 12 hr) with methanolic methoxide and at 65° (4.5 hr) in non-basified methanol. The chloro group is also displaced by hydrazine (80°, 1 hr), ammonia (140°, 6 hr), and phenyl-magnesium bromide (70°, 12 hr), the latter forming the triphenyl compound 315.3-Chloro-6-phenyl-as-triazine is unstable to cold water or alkali and to hot alcohol or aqueous potassium carbonate. ... [Pg.299]

Substituents in the 6-position (cf. 267) show appreciable reactivity. 6-Bromo-as-triazine-3,5(2j, 4j )-dione (316) undergoes 6-substitution with secondary amines or hydrazine, with mercaptide anions or thiourea (78°, 16 hr), with molten ammonium acetate (170°, 24 hr, 53% yield), and with chloride ion during phosphorous oxychloride treatment to form 3,5,6-trichloro-as-triazine. The latter was characterized as the chloro analog of 316 by treatment with methanol (20°, heat evolution) and hydrolysis (neutral or acid) to the dioxo compound. The mercapto substituent in 6-mercapto-as-triazine-3,5(2iI,4if)-dione is displaced by secondary... [Pg.299]

Because of the ease of ring synthesis, symmetrically trisubstituted s-triazines have been more thoroughly studied, but a few nucleophilic substitutions of derivatives bearing a single leaving group are known. 2-Chloro-4,6-diphenyl- and 2-chloro-4,6-dimethyl-s-triazines (318) undergo facile nucleophilic displacements with ammonia, amines, and hydrazine, with alkoxide, or with hydrosulfide... [Pg.300]

Reaction of 2,4-dichloro-l,5-naphthyridine with ammonia (170°, 20 hr), hydrazine (100°, 16 hr), or aqueous hydrochloric acid (100°, 3 hr) was shown to yield the 2-amino- (47% yield) and 2-hydroxy-4-chloro derivatives (66% yield), but 2-hydrazino substitution (68% yield) was assumed. Disubstitution with ammonia (190°, 4 hr), hydrazine (100°, 48 hr), and ammonia-phenol (180°, 6 hr) occurred in high yield. Displacement of the 4-oxo group in 2,4-dioxo-l,5-naphthyridine occurs with aniline plus its hydrochloride (180°, 12 hr, 88% yield) to yield 429. Oxo groups in the 2- or 4-positions were... [Pg.378]

Only a few displacements involving mono-substituted compounds are known. 4-Chloropyrido[2,3-d]pyrimidine reacts readily (96°, 30 min) with aqueous aniline, hydrazine, or ammonia and with diethylamine (0°, 16 hr). In contrast to the 1,3,6-isomers, the 4-oxo and 2,4-dioxo derivatives are readily converted into chloro and thioxo derivatives by phosphorus oxychloride and pentasul-... [Pg.386]

Reaction of 5-chloro-l,2,4-triazolo[l,5-c]pyrimidines (165) with sodium hydroxide, thiourea, or hydrazine hydrate (79AJC1585) or with sodium azide (85EUP152841) also caused the displacement of the chlorine atom to... [Pg.379]

Similar selectivity in displacement reactions is shown by 3,6-dichloropyridazine (153) (available by halogenation of the product from maleic anhydride and hydrazine). Thus, reaction of the dihalide with the sodium salt from sulfanilamide (93) affords fiulfachloropyridazine (104). Reaction of this last with sodium methoxide under somewhat more drastic conditions results in displacement of the remaining chlorine to give sulfamethoxypyrida-zine (105). ... [Pg.131]

Condensation of ethyl acetoacetate with phenyl hydrazine gives the pyrazolone, 58. Methylation by means of methyl iodide affords the prototype of this series, antipyrine (59). Reaction of that compound with nitrous acid gives the product of substitution at the only available position, the nitroso derivative (60) reduction affords another antiinflammatory agent, aminopyrine (61). Reductive alkylation of 61 with acetone in the presence of hydrogen and platinum gives isopyrine (62). Acylation of 61 with the acid chloride from nicotinic acid affords nifenazone (63). Acylation of 61 with 2-chloropropionyl chloride gives the amide, 64 displacement of the halogen with dimethylamine leads to aminopropylon (65). ... [Pg.234]

Finally the aminoquinoline bearing a primary amine at the terminal carbon atom of the side chain is itself an effective antimalarial drug. Ring opening of 2-methyltetrahydrofuran by bromine gives the dibromide, 99. The primary halide is sufficiently less hindered so that reaction with potassium phthalimide affords exclusively the product of displacement of that halogen (100). Alkylation of the aminoquinoline with lOO affords the secondary amine, 101. Removal of the phthalimide group by means of hydrazine yields primaquine (102). ... [Pg.346]

In much the same vein, reaction of the heterocycle, 145 (obtainable from phthalic acid and hydrazine), with phosphorus oxychloride gives the dichloride, 146. Double displacement of halogen by means of hydrazine leads to dihydralazine (147)... [Pg.353]

Opening of the oxirane with tertiary butyl amine would then complete construction of the 3-blocking side chain (40). Displacement of chlorine by hydrazine then affords... [Pg.151]

Two closely related indoles fused to an additional saturated ring have been described as CNS agents. The first of these is obtained in straightforward manner by Fischer indole condensation of functionalized cyclohexanone 0 with phenyl hydrazine (19). The product, cyclindole (21) shows antidepressant activity. The fluorinated analogue flucindole (26) can be prepared by the same scheme. An alternate route starting from a somewhat more readily available intermediate involves as the first step Fischer condensation of substituted phenyl hydrazine with 4-hydroxycyclohexanone (23). The resulting alcohol (24) is then converted to its tosylate (25). Displacement by means of dimethyl amine leads to the antipsychotic agent flucindole (26). ... [Pg.168]

Hydrazinopyridazines such as hydralazine have a venerable history as anti hypertensive agents. It is of note that this biological activity is maintained in the face of major modifications in the heterocyclic nucleus. The key intermediate keto ester in principle can be obtained by alkylation of the anion of pi peri done 44 with ethyl bromo-acetate. The cyclic acylhydrazone formed on reaction with hydrazine (46) is then oxidized to give the aromatized compound 47. The hydroxyl group is then transformed to chloro by treatment with phosphorus oxychloride (48). Displacement of halogen with hydrazine leads to the formation of endralazine (49). ... [Pg.232]

A piridazine ring forms the nucleus for a rather unusual nontricyclic antidepre.ssant. Condensation of the keto ester 136 with hydrazine leads to the cyclic hydrazide 137. Oxidation, for example with bromine, gives the corresponding pyridazone 138. The oxygen is then replaced by chlorine by reaction with phosphorus oxychloride. Displacement of the halogen in 139 with N-ethylami-nomorpholine affords minaprine 140 [30]. [Pg.120]


See other pages where Displacement hydrazine is mentioned: [Pg.385]    [Pg.92]    [Pg.97]    [Pg.97]    [Pg.288]    [Pg.291]    [Pg.293]    [Pg.58]    [Pg.160]    [Pg.161]    [Pg.161]    [Pg.82]    [Pg.159]    [Pg.447]    [Pg.202]    [Pg.203]    [Pg.205]    [Pg.240]    [Pg.290]    [Pg.366]    [Pg.371]    [Pg.372]    [Pg.377]    [Pg.380]    [Pg.383]    [Pg.384]    [Pg.113]    [Pg.282]    [Pg.353]    [Pg.90]    [Pg.144]   
See also in sourсe #XX -- [ Pg.473 ]




SEARCH



© 2024 chempedia.info