Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Disk transfer rate

ISO-Nomi 9660), respectively. This is equivalent to 200,000 pages of text. The access time is between 200 and 600 ms. The data transfer rate of a standard audio CD player is 144 KB/s, but dedicated CD-ROM drives can transfer data at up to 300 KB/s by doubling the rotational speed of the disk. [Pg.139]

With disk diameters above 5.25 in., all parameters, eg, water absorption and thermal expansion, become more critical which aggravates the expansion or warp of disks. If in the future disk rotation speeds have to be increased significantly to boost data transfer rates, higher demands will be placed on warp (tilt angle) and modulus to avoid creeping (ie, irreversible elongation in radial direction). A survey of the requirement profile for the substrate material of optical disks is given in Table 5 (182,186,187,189). [Pg.156]

The question as to whether and to what extent and in what area optical mass storage would replace magnetic systems (disk, tape) was controversially being discussed in the 1980s. In spite of all predictions of an imminent substitution, as of late 1994 magnetic hard disks stiU are the system of choice for computer-dedicated mass storage due to their speed (access time, transfer rate), physical size, and energy consumption this is especially tme when memory-intensive appHcations are mn which use the hard disk as virtual memory. [Pg.164]

In the Direct SCF method, we do. not store the two-electron integrals over the basis functions, we recalculate them on demand every cycle of the HF procedure At first sight, this may seem wasteful, but Conventional methods rely on disk input/output transfer rates whilst Direct methods rely on processor power. There is obviously a balance between processor speed and disk I/O. Just for the record my calculation on aspirin (73 basis functions) took 363 s using the Direct method and 567 s using the Conventional method. [Pg.180]

Mass-transfer rates from limiting-current measurements in well-supported solutions should invariably be correlated with ionic and not with molecular diffusivities. The former can be calculated from limiting-current measurements, for example, at a rotating-disk electrode. [Pg.233]

The diffusivities thus obtained are necessarily effective diffusivities since (1) they reflect a migration contribution that is not always negligible and (2) they contain the effect of variable properties in the diffusion layer that are neglected in the well-known solutions to constant-property equations. It has been shown, however, that the limiting current at a rotating disk in the laminar range is still proportional to the square root of the rotation rate if the variation of physical properties in the diffusion layer is accounted for (D3e, H8). Similar invariant relationships hold for the laminar diffusion layer at a flat plate in forced convection (D4), in which case the mass-transfer rate is proportional to the square root of velocity, and in free convection at a vertical plate (Dl), where it is proportional to the three-fourths power of plate height. [Pg.233]

Of considerable interest is the use of small isolated electrodes, in the form of strips or disks embedded in the wall, to measure local mass-transfer rates or rate fluctuations. Mass-transfer to spot electrodes on a rotating disk is represented by Eqs. (lOg-i) of Table VII. Analytical solutions in this case have to take account of curved streamlines. Despic et al. (Dlld) have proposed twin spot electrodes as a tool for kinetic studies, similar to the ring-disk electrode applications of disk and ring-disk electrodes for kinetic studies are discussed in several monographs (A3b, P4b). In fully developed channel or pipe flow, mass transfer to such electrodes is given by the following equation based on the Leveque model ... [Pg.261]

An interesting study [52] of the protonation kinetics and equilibrium of radical cations and dications of three carotenoid derivatives involved cyclic voltammetry, rotating-disk electrolysis, and in situ controlled-potential electrochemical generation of the radical cations. Controlled-potential electrolysis in the EPR cavity was used to identify the electrode reactions in the cyclic volt-ammograms at which radical ions were generated. The concentrations of the radicals were determined from the EPR amplitudes, and the buildup and decay were used to estimate lifetimes of the species. To accomplish the correlation between the cyclic voltammetry and the formation of radical species, the relative current from cyclic voltammetry and the normalized EPR signal amplitude were plotted against potential. Electron transfer rates and the reaction mechanisms, EE or ECE, were determined from the electrochemical measurements. This study shows how nicely the various measurement techniques complement each other. [Pg.946]

C. Deslouis and B. Tribollet present the theoretical basis and state of the art of a novel technique for kinetic analysis, in which the mass transfer rate to a rotating disk electrode is modulated. The capabilities and limitations of this technique are demonstrated along with illustrations of typical applications. [Pg.274]

The IEEE-488 has one major drawback in everyday applications. The overall performance of the bus depends on the slowest device connected to the bus, which means that one slow instrument can slow down data transfer rates within a system to a not acceptable level (e. g. think of a hard disk which is connected to the computer on the same bus). [Pg.174]

Spray, packed, and sieve-plate columns give poor mass-transfer rates for consequently require greater height. The mass transfer in such columns can be significantly improved by providing mechanical agitation. Remen (1951) and Oldshue and Rushton (1952) introduced the rotating-disk contactor (see Fig. 26b) and the mixed column (see Fig. 26c). [Pg.105]


See other pages where Disk transfer rate is mentioned: [Pg.279]    [Pg.279]    [Pg.332]    [Pg.341]    [Pg.142]    [Pg.149]    [Pg.149]    [Pg.431]    [Pg.88]    [Pg.52]    [Pg.83]    [Pg.218]    [Pg.254]    [Pg.259]    [Pg.272]    [Pg.274]    [Pg.336]    [Pg.327]    [Pg.810]    [Pg.136]    [Pg.215]    [Pg.238]    [Pg.325]    [Pg.326]    [Pg.43]    [Pg.142]    [Pg.149]    [Pg.149]    [Pg.88]    [Pg.208]    [Pg.31]    [Pg.59]    [Pg.63]    [Pg.250]    [Pg.212]    [Pg.134]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Transfer rate

© 2024 chempedia.info