Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Direct Dynamics definition

The ability of SFE-FTIR to perform a variety of extraction methods is a definite advantage, especially for the study of complex mixtures containing analytes of varying solubility. For analytes which are readily solubilised in C02, direct dynamic and direct static-dynamic SFE-FTIR methods are quite successful. Elimination of the trapping process reduces both analysis time and potential analyte loss arising from... [Pg.450]

Here we focus on the effect of dipolar dispersion laws for high-frequency collective vibrations on the shift and width of their spectral line, with surface molecules inclined at an arbitrary angle 6 to the surface-normal direction. For definiteness, we consider the case of a triangular lattice and the ferroelectric ordering of dipole moments inherent in this lattice type.56,109 Lateral interactions of dynamic dipole moments p = pe (e = (sin os, sin6fcin , cos )) corresponding to collective vibrations on a simple two-dimensional lattice of adsorbed molecules cause these vibrations to collectivize in accordance with the dispersion law 121... [Pg.114]

In order to define how the nuclei move as a reaction progresses from reactants to transition structure to products, one must choose a definition of how a reaction occurs. There are two such definitions in common use. One definition is the minimum energy path (MEP), which defines a reaction coordinate in which the absolute minimum amount of energy is necessary to reach each point on the coordinate. A second definition is a dynamical description of how molecules undergo intramolecular vibrational redistribution until the vibrational motion occurs in a direction that leads to a reaction. The MEP definition is an intuitive description of the reaction steps. The dynamical description more closely describes the true behavior molecules as seen with femtosecond spectroscopy. [Pg.159]

The sub-micro level cannot easily be seen directly, and while its principles and components are currently accepted as tme and real, it depends on the atonuc theory of matter. The scientific definition of a theory can be emphasised here with the picture of the atom constantly being revised. As Silberberg (2006) points out, scientists are confident about the distribution of electrons but the interactions between protons and neutrons within the nucleus are still on the frontier of discovery (p. 54). This demorrstrates the dynamic and exciting nature of chemistry. Appreciating this overview of how scierrtific ideas are developing may help students to expand their epistemology of science. [Pg.173]

In summary, the quantitative information on the frequencies, amplitudes, and directions of Fe motion from NIS measurements provides a definitive test of the detailed normal-mode predictions provided by modem quantum chemical calculations. However, first-principles calculations greatly assist in the analysis and interpretation of experimental NIS data, thus revealing a consistent picture of the vibrational dynamics of iron in molecules. [Pg.195]

This technique was employed to study the binding dynamics of Pyronine Y (31) and B (32) with /)-CD/ s The theoretical background for this particular system has been discussed with the description of the technique above. Separate analysis of the individual correlation curves obtained was difficult since the diffusion time for the complex could not be determined directly because, even at the highest concentration of CD employed, about 20% of the guest molecules were still free in solution. The curves were therefore analyzed using global analysis to obtain the dissociation rate constant for the 1 1 complex (Table 12). The association rate constant was then calculated from the definition of the equilibrium constant. [Pg.213]

Liquid chromatography (LC) and, in particular, high performance liquid chromatography (HPLC), is at present the most popular and widely used separation procedure based on a quasi-equilibrium -type of molecular distribution between two phases. Officially, LC is defined as a physical method... in which the components to be separated are distributed between two phases, one of which is stationary (stationary phase) while the other (the mobile phase) moves in a definite direction [ 1 ]. In other words, all chromatographic methods have one thing in common and that is the dynamic separation of a substance mixture in a flow system. Since the interphase molecular distribution of the respective substances is the main condition of the separation layer functionality in this method, chromatography can be considered as an excellent model of other methods based on similar distributions and carried out at dynamic conditions. [Pg.167]

There are (at least) two major opportunities for research by those interested in this topic. On the computational side, there is definite room for improvement in simulation methods. Right now none of the simulation approaches has the user friendliness that has brought electronic-structure calculation into the realm of routine applicability by nonspecialists. Nor has the field seen the development of the qualitative or semiquantitative models that did so much to make the results of molecular orbital calculations useful to organic chemists. On the experimental side, it will be obvious to the reader that the techniques for detecting the effects of nonstatistical dynamics are still very rudimentary and indirect. There is clearly room for creative scientists to come up with techniques whose results can give us more direct insight into these issues. [Pg.956]

A triple point is a point where three phase boundaries meet. For water, it occurs at 4.6 Torr and 0.01°C (see Fig. 8.5). At the triple point, all three phases (ice, liquid, and vapor) coexist in dynamic equilibrium. Under these conditions, water molecules leave ice to become liquid and return to form ice at the same rate liquid vaporizes and vapor condenses at the same rate and ice sublimes and vapor condenses directly to ice again at the same rate. The location of the triple point of a substance is a fixed property of that substance and cannot be changed by changing the conditions. The triple point of water is used to define the size of the kelvin by definition, there are exactly 273.16 kelvins between absolute zero and the triple point of water. The normal freezing point of water is found to lie 0.01 K below the triple point, so 0°C corresponds to 273.15 K. [Pg.502]

Over the last decade considerable effort of the tectonics community has been directed towards the development of thermomechanical models that describe the collisional history and the internal dynamics of orogenic belts and continental plateaus (e.g., Beaumont et al. 2001, 2004 Koons et al. 2002). These models are commonly tested against thermobarometric, thermochronologic, and geochronologic data. However, by definition, these data sets only provide constraints on rates of rock uplift or exhumation the surface response to tectonic... [Pg.91]


See other pages where Direct Dynamics definition is mentioned: [Pg.394]    [Pg.66]    [Pg.106]    [Pg.914]    [Pg.503]    [Pg.88]    [Pg.576]    [Pg.122]    [Pg.203]    [Pg.467]    [Pg.162]    [Pg.397]    [Pg.126]    [Pg.17]    [Pg.104]    [Pg.180]    [Pg.140]    [Pg.319]    [Pg.322]    [Pg.6]    [Pg.92]    [Pg.126]    [Pg.940]    [Pg.392]    [Pg.382]    [Pg.164]    [Pg.189]    [Pg.146]    [Pg.29]    [Pg.102]    [Pg.15]    [Pg.81]    [Pg.706]    [Pg.405]    [Pg.34]    [Pg.36]    [Pg.28]    [Pg.57]    [Pg.207]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Direct dynamics

Dynamic, definition

© 2024 chempedia.info