Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dirac-Coulomb orbital

Fig. 1. BLYP/uncDZ mean dipole polarizability of the mercury atom as a function of frequency. All values in atomic units. SR+SO refers to calculations based on the Dirac-Coulomb Hamiltonians, whereas SR refers to calculations in which all spin-orbit interaction has been eliminated. Fig. 1. BLYP/uncDZ mean dipole polarizability of the mercury atom as a function of frequency. All values in atomic units. SR+SO refers to calculations based on the Dirac-Coulomb Hamiltonians, whereas SR refers to calculations in which all spin-orbit interaction has been eliminated.
Heavy atoms exhibit large relativistic effects, often too large to be treated perturba-tively. The Schrodinger equation must be supplanted by an appropriate relativistic wave equation such as Dirac-Coulomb or Dirac-Coulomb-Breit. Approximate one-electron solutions to these equations may be obtained by the self-consistent-field procedure. The resulting Dirac-Fock or Dirac-Fock-Breit functions are conceptually similar to the familiar Hartree-Fock functions the Hartree-Fock orbitals are replaced, however, by four-component spinors. Correlation is no less important in the relativistic regime than it is for the lighter elements, and may be included in a similar manner. [Pg.161]

Spin-orbit interaction Hamiltonians are most elegantly derived by reducing the relativistic four-component Dirac-Coulomb-Breit operator to two components and separating spin-independent and spin-dependent terms. This reduction can be achieved in many different ways for more details refer to the recent literature (e.g., Refs. 17-21). [Pg.125]

From the four-component Dirac-Coulomb-Breit equation, the terms [99]—[102] can be deduced without assuming external fields. A Foldy-Wouthuysen transformation23 of the electron-nuclear Coulomb attraction and collecting terms to order v1 /c1 yields the one-electron part [99], Similarly, the two-electron part [100] of the spin-same-orbit operator stems from the transformation of the two-electron Coulomb interaction. The spin-other-orbit terms [101] and [102] have a different origin. They result, among other terms, from the reduction of the Gaunt interaction. [Pg.126]

We introduce the change of the metric characteristic of DPT, and expand in powers of c. To 0(c ) we get the non-relativistic Hartree-Fock equations in Levy-Leblond form. The leading relativistic correction to the energy is then expressible in terms of nonrelativistic HF spin orbitals or rather the corresponding lower components xf - For the Dirac-Coulomb operator we get after some rearrangement [17, 18] ... [Pg.738]

Shape-consistent pseudopotentials including spin-orbit operators based on Dirac-Hartree-Fock AE calculations using the Dirac-Coulomb Hamiltonian have been generated by Christiansen, Ermler and coworkers [161-170]. The potentials and corresponding valence basis sets are also available on the internet under http //www.clarkson.edu/ pac/reps.html. A similar, quite popular set for main group and transition elements based on scalar-relativistic Cowan-Griffin AE calculations was published by Hay and Wadt [171-175]. [Pg.822]

An improved basis set with 36s32p24d22fl0g7h6i uncontracted Gaussian-type orbitals was used and all 119 electrons were correlated, leading to a better estimate of the electron affinity within the Dirac-Coulomb-Breit Hamiltonian, 0.064(2) eV [102]. Since the method for calculating the QED corrections [101] is based on the one-electron orbital picture, the 8s orbital of El 18 was extracted from the correlated wave function by... [Pg.113]

The expression for the lowest order contribution to the parity violating potential within the Dirac Hartree-Fock framework is identical to that within the relativistically parameterised extended Hiickel approach in eq. (146). The difference is, however, that in DHF typically atomic basis sets with fixed radial functions are employed (see [161]) and that the molecular orbital coefficients are obtained in a self-consistent Dirac Hartree-Fock procedure. Computations of parity violating potentials along these lines have occasionally been called fully relativistic, although this term is rather unfortunate. In the four-component Dirac Hartree-Fock calculations by Quiney, Skaane and Grant [155] as well as in those by Schwerdtfeger, Laerdahl and coworkers [65,156,162,163] the Dirac-Coulomb operator has been employed, which is for systems with n electrons given by... [Pg.248]

A full relativistic theory for coupling tensors within the polarization propagator approach at the RPA level was presented as a generalization of the nonrelativistic theory. Relativistic calculations using the PP formalism have three requirements, namely (i) all operators representing perturbations must be given in relativistic form (ii) the zeroth-order Hamiltonian must be the Dirac-Coulomb-Breit Hamiltonian, /foBC, or some approximation to it and (iii) the electronic states must be relativistic spin-orbitals within the particle-hole or normal ordered representation. Aucar and Oddershede used the particle-hole Dirac-Coulomb-Breit Hamiltonian in the no-pair approach as a starting point, Eq. (18),... [Pg.84]


See other pages where Dirac-Coulomb orbital is mentioned: [Pg.194]    [Pg.314]    [Pg.174]    [Pg.158]    [Pg.113]    [Pg.113]    [Pg.10]    [Pg.90]    [Pg.91]    [Pg.103]    [Pg.370]    [Pg.795]    [Pg.832]    [Pg.120]    [Pg.81]    [Pg.82]    [Pg.96]    [Pg.115]    [Pg.352]    [Pg.353]    [Pg.358]    [Pg.358]    [Pg.404]    [Pg.410]    [Pg.435]    [Pg.438]    [Pg.650]    [Pg.22]    [Pg.116]    [Pg.117]    [Pg.10]    [Pg.120]    [Pg.614]    [Pg.627]    [Pg.637]    [Pg.651]    [Pg.396]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Dirac orbital

Dirac-Coulomb

© 2024 chempedia.info