Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipole moments modes

Figure Bl.25.12 illustrates the two scattering modes for a hypothetical adsorption system consisting of an atom on a metal [3]. The stretch vibration of the atom perpendicular to the surface is accompanied by a change m dipole moment the bending mode parallel to the surface is not. As explained above, the EELS spectrum of electrons scattered in the specular direction detects only the dipole-active vibration. The more isotropically scattered electrons, however, undergo impact scattering and excite both vibrational modes. Note that the comparison of EELS spectra recorded in specular and off-specular direction yields infomiation about the orientation of an adsorbed molecule. Figure Bl.25.12 illustrates the two scattering modes for a hypothetical adsorption system consisting of an atom on a metal [3]. The stretch vibration of the atom perpendicular to the surface is accompanied by a change m dipole moment the bending mode parallel to the surface is not. As explained above, the EELS spectrum of electrons scattered in the specular direction detects only the dipole-active vibration. The more isotropically scattered electrons, however, undergo impact scattering and excite both vibrational modes. Note that the comparison of EELS spectra recorded in specular and off-specular direction yields infomiation about the orientation of an adsorbed molecule.
Figure Bl.25.12. Excitation mechanisms in electron energy loss spectroscopy for a simple adsorbate system Dipole scattering excites only the vibration perpendicular to the surface (v ) in which a dipole moment nonnal to the surface changes the electron wave is reflected by the surface into the specular direction. Impact scattering excites also the bending mode v- in which the atom moves parallel to the surface electrons are scattered over a wide range of angles. The EELS spectra show the higlily intense elastic peak and the relatively weak loss peaks. Off-specular loss peaks are in general one to two orders of magnitude weaker than specular loss peaks. Figure Bl.25.12. Excitation mechanisms in electron energy loss spectroscopy for a simple adsorbate system Dipole scattering excites only the vibration perpendicular to the surface (v ) in which a dipole moment nonnal to the surface changes the electron wave is reflected by the surface into the specular direction. Impact scattering excites also the bending mode v- in which the atom moves parallel to the surface electrons are scattered over a wide range of angles. The EELS spectra show the higlily intense elastic peak and the relatively weak loss peaks. Off-specular loss peaks are in general one to two orders of magnitude weaker than specular loss peaks.
Qualitatively, the selection rule for IR absorption for a given mode is that the symmetry of qT ) " must he the same as qT ). Qiianii-talivcly, the transition dipole moment is proportion al to tlie dipole derivative with respect to a given normal mode dp/di. ... [Pg.337]

The result of all of the vibrational modes contributions to la (3 J-/3Ra) is a vector p-trans that is termed the vibrational "transition dipole" moment. This is a vector with components along, in principle, all three of the internal axes of the molecule. For each particular vibrational transition (i.e., each particular X and Xf) its orientation in space depends only on the orientation of the molecule it is thus said to be locked to the molecule s coordinate frame. As such, its orientation relative to the lab-fixed coordinates (which is needed to effect a derivation of rotational selection rules as was done earlier in this Chapter) can be described much as was done above for the vibrationally averaged dipole moment that arises in purely rotational transitions. There are, however, important differences in detail. In particular. [Pg.404]

Find the molecular model of 18 crown 6 (see Figure 16 2) on Learning By Modeling and examine its electrostatic potential map View the map in vanous modes (dots contours and as a transparent surface) Does 18 crown 6 have a dipole moment Are vicinal oxygens anti or gauche to one another"d... [Pg.700]

In addition to total energy and gradient, HyperChem can use quantum mechanical methods to calculate several other properties. The properties include the dipole moment, total electron density, total spin density, electrostatic potential, heats of formation, orbital energy levels, vibrational normal modes and frequencies, infrared spectrum intensities, and ultraviolet-visible spectrum frequencies and intensities. The HyperChem log file includes energy, gradient, and dipole values, while HIN files store atomic charge values. [Pg.51]

In the case of H2O it is easy to see from the form of the normal modes, shown in Figure 4.15, that all the vibrations Vj, V2 and V3 involve a change of dipole moment and are infrared active, that is w=l-0 transitions in each vibration are allowed. The transitions may be labelled Ig, 2q and 3q according to a useful, but not universal, convention for polyatomic molecules in which N, refers to a transition with lower and upper state vibrational quantum numbers v" and v, respectively, in vibration N. [Pg.167]

Inspection of the normal modes shows that only V3 and Vj involve a change of dipole moment and are infrared active. [Pg.167]

Summarizing, in the crystal there are 36 Raman active internal modes (symmetry species Ug, hig, 2g> and 26 infrared active internal modes (biw b2w hsu) as well as 12 Raman active and 7 infrared active external vibrations (librations and translations). Vibrations of the type are inactive because there appears no dipole moment along the normal coordinates in these vibrations of the crystal. [Pg.47]

Incidentally, isocyanides are polar (for CNC H, the dipole moment is 3.44 D) and they are good bases (vs. BRj, H+), whereas CO is a poor base hence isocyanides can function as ligands in metal complexes where carbon monoxide does not. The scarcity of low-valent isocyanide complexes is less easily explained, however. Arguments involving 77-acceptor capacity are quite inappropriate. More data on low-valent species, and evaluations of stabilities, modes of decomposition, and reactions are desirable. [Pg.24]

In the "scissors mode" of H2O, the protons move parallel to the surface and the oscillation frequency is almost unaffected. For NH3, on the other hand, the so called "umbrella mode" is drastically stiffened by the surface because the protons move against the surface and suffer a strong Coulomb repulsion. Here again the dynamical dipole moment is dp/da = 2 Pj, slnda. For NHj, where Pjj = 0.53 a.u., the enhancement of the aynamlc dipole by the surface is compensated by the smaller oscillation amplitude. [Pg.401]

The physical meaning of the g (ion) potential depends on the accepted model of an ionic double layer. The proposed models correspond to the Gouy-Chapman diffuse layer, with or without allowance for the Stem modification and/or the penetration of small counter-ions above the plane of the ionic heads of the adsorbed large ions. " The experimental data obtained for the adsorption of dodecyl trimethylammonium bromide and sodium dodecyl sulfate strongly support the Haydon and Taylor mode According to this model, there is a considerable space between the ionic heads and the surface boundary between, for instance, water and heptane. The presence in this space of small inorganic ions forms an additional diffuse layer that partly compensates for the diffuse layer potential between the ionic heads and the bulk solution. Thus, the Eq. (31) may be considered as a linear combination of two linear functions, one of which [A% - g (dip)] crosses the zero point of the coordinates (A% and 1/A are equal to zero), and the other has an intercept on the potential axis. This, of course, implies that the orientation of the apparent dipole moments of the long-chain ions is independent of A. [Pg.41]

Rh(CO)2 [16]. Such a dicarbonyl should possess two vibration modes. However, only the symmetric mode is observable in the IR spectrum. The asymmetric mode is inaccessible to an IR experiment on a metal surface due to the so-called metal surface selection rule, which prohibits the observation of dipole excitation if the transition dipole moment is oriented parallel to the surface. It should be noted that the observed frequencies fit well to values observed for Rh(CO)2 on technical Rh/Al203 catalysts [35-40] ( 2100 cm ) and Rh(CO)2 on planar TiO2(110) surfaces [41] (2112 cm ). [Pg.122]

Owing to the almost octahedral environment of the iron center, three out of six Fe-N stretching modes are invisible in NIS and IR spectra. Those modes that transform according to and Eg representations of the ideal octahedron do not contribute to the msd of the iron nucleus or to the variation of the electric dipole moment. Only the remaining three modes that transform according to Tiu representations can be observed in NIS- and IR spectra. These three modes, as obtained... [Pg.524]

While s-polarized radiation approaches a phase change near 180° on reflection, the change in phase of the p-polarized light depends strongly on the angle of incidence [20]. Therefore, near the metal surface (in the order of the wavelength of IR) the s-polarized radiation is greatly diminished in intensity and the p-polarized is not [9]. This surface selection rule of metal surfaces results in an IR activity of adsorbed species only if Sfi/Sq 0 (/i = dipole moment, q = normal coordinate) for the vibrational mode perpendicular to the surface. [Pg.135]

The second derivatives can be calculated numerically from the gradients of the energy or analytically, depending upon the methods being used and the availability of analytical formulae for the second derivative matrix elements. The energy may be calculated using quantum mechanics or molecular mechanics. Infrared intensities, Ik, can be determined for each normal mode from the square of the derivative of the dipole moment, fi, with respect to that normal mode. [Pg.694]

This function is a continuous analogue of the frequencies derived from the quasiharmonic approximation. Information about the intensities can be obtained by using the dipole moment autocorrelation function in place of the velocity. The advantage of using MD to build up information about the vibrational modes of the polymer is that the approach incorporates an averaging over many vibrational states of a complex molecule, which may be changing conformation... [Pg.694]

Cheam, T. C., and S. Krimm. 1985. Infrared Intensities of Amide Modes in N-methyl-acetamide and Poly(Glycine I) From Ab Initio Calculations of Dipole Moment Derivatives of N-methylacetamide. J. Chem. Phys. 82, 1631-1641. [Pg.148]


See other pages where Dipole moments modes is mentioned: [Pg.1061]    [Pg.1152]    [Pg.1155]    [Pg.1192]    [Pg.2960]    [Pg.337]    [Pg.403]    [Pg.325]    [Pg.337]    [Pg.318]    [Pg.2]    [Pg.16]    [Pg.65]    [Pg.425]    [Pg.63]    [Pg.696]    [Pg.586]    [Pg.742]    [Pg.218]    [Pg.242]    [Pg.657]    [Pg.148]    [Pg.324]    [Pg.36]    [Pg.15]    [Pg.138]    [Pg.259]    [Pg.308]    [Pg.85]   
See also in sourсe #XX -- [ Pg.91 ]

See also in sourсe #XX -- [ Pg.101 , Pg.629 ]




SEARCH



Dipole modes

© 2024 chempedia.info