Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipolarophiles regioselectivity

Nitrone cycloaddition reactions promoted by dichlorotitanium TADDOLate can be improved by using A(-(2-alkenyl)succinimides as the dipolarophiles. Regioselective and enantioselective formation of cyclopentenecarboxylic esters is observed using 8 to catalyze the [3+2]cycloaddition of 2,3-butadienoates with electron-deficient alkenes. ... [Pg.89]

When both the 1,3-dipoIe and the dipolarophile are unsymmetrical, there are two possible orientations for addition. Both steric and electronic factors play a role in determining the regioselectivity of the addition. The most generally satisfactory interpretation of the regiochemistry of dipolar cycloadditions is based on frontier orbital concepts. As with the Diels-Alder reaction, the most favorable orientation is that which involves complementary interaction between the frontier orbitals of the 1,3-dipole and the dipolarophile. Although most dipolar cycloadditions are of the type in which the LUMO of the dipolarophile interacts with the HOMO of the 1,3-dipole, there are a significant number of systems in which the relationship is reversed. There are also some in which the two possible HOMO-LUMO interactions are of comparable magnitude. [Pg.647]

Azomethine ylides 38 reacted with a variety of dipolarophiles to generate cycloadducts in a highly diastereo- and regioselective manner. The novel shapes, along with the rich array of functionalities displayed by these products, provide opportunities for the creation of chemical diversity (Scheme 12.28). [Pg.474]

Each 1,3-dipole exhibits a characteristic regioselectivity toward different types of dipolarophiles. The dipolarophiles can be grouped, as were dienophiles, depending upon whether they have ERG or EWG substituents. The regioselectivity can be... [Pg.528]

Apart from the role of substituents in determining regioselectivity, several other structural features affect the reactivity of dipolarophiles. Strain increases reactivity norbornene, for example, is consistently more reactive than cyclohexene in 1,3-DCA reactions. Conjugated functional groups usually increase reactivity. This increased reactivity has most often been demonstrated with electron-attracting substituents, but for some 1,3-dipoles, enol ethers, enamines, and other alkenes with donor substituents are also quite reactive. Some reactivity data for a series of alkenes with several 1,3-dipoles are given in Table 10.6 of Part A. Additional discussion of these reactivity trends can be found in Section 10.3.1 of Part A. [Pg.529]

These authors also prepared novel epoxy-bridged cyclooxaalkanones in this process, the carbonyl group always acts as 1,3-dipolarophile, even if one employs ct,(3-unsaturated aldehydes. Thus, reaction of 6/2-16 with aliphatic or aromatic aldehydes 6/2-17 in the presence of catalytic amounts of rhodium acetate gave 6/2-18, regioselectively. With the a, 3-unsaturated aldehydes 6/2-20, only cycloadducts 6/2-21 were obtained using the diazo compound 6/2-19 as substrate (Scheme 6/2.3) [191]. [Pg.423]

It is well known that the use of a synthetic equivalent of azomethine ylide, the thiazolium ylide, a known synthon for the simple azomethine dipole, undergoes cycloadditions with higher regioselectivity than the parent ylide <1994JOC4304, 1994JOC2773>. In order to control the enantioselectivity of the reaction, an Evans oxazolidionone was incorporated into the acrylate dipolarophile as in Scheme 71. The cycloaddition was carried out by reaction of 4 equiv of the acrylate with the thiazolium salt to afford the diastereomeric tricyclic adduct 27 (Scheme 71) <2002BMC3509>. [Pg.680]

Independent work by Schmid93 and by Padwa94 on the photochemistry of 2H-azirines has shown that irradiation of such systems leads in the first instance to the formation of nitrile ylids (nitrilium betaines). Subsequent 1,3-addition to a variety of dipolarophiles affords five-membered heterocycles. These additions take place in a stereospecific and regioselective manner thus, irradiation of the diphenyl-2f/-azirine 117 in the presence of dimethyl maleate leads to the formation of the two isomeric 1-pyrrolines... [Pg.259]

The microwave-assisted dipolar cycloaddition of pyridazinyl quaternary salts such as 20 was shown to be substantially better than the reaction using conventional heating. Novel regioselective reactions using monosubstituted dipolarophiles were also included <06SL804>. [Pg.389]

A systematic exploration of the intramolecular [4+2]/[3+2] cycloaddition cascade of 1,3,4-oxadiazoles was described. The studies permit the use of unsymmetrical dienophiles, dipolarophiles, and oxadiazoles as well as to control the cycloaddition regioselectivity and diastereoselectivity. The scope and utility of the reaction were defined <2006JA10589>. The tandem intramolecular [4+2]/[3+2] cycloaddition cascade reaction of 1,3,4-oxadiazole was applied to the syntheses of a series of natural products including a total synthesis of (-)- and ent-(+)-vindoline <2006JA10596>. [Pg.407]

Dipolarophiles D1 and D2. In the study of steric and electronic factors on regioselectivity and stereoselectivity of 1,3-cycloaddition of nitrones to olefins, 1-decene (734) and styrene derivatives (735) have been used. By comparative analyses of the kinetic and thermodynamic parameters in the 1,3-cycloadditions... [Pg.315]

The influence of electronic factors on the regioselective cycloadditions of nitrones (551), and (583) to (585) to acrylates has been demonstrated by using dipolarophiles with electrophilic substituents at the P-carbon of the alkene in y-bromo a, 3-unsaturated esters and lactones (774) and in ethyl 2-hydroperfluoro-2-alkenoates (586) (775). The reactions of enoates (586) with nitrones are regio-specific and afford isoxazolidines with the CC>2Et and R/, groups in C-4 and C-5... [Pg.338]

Dipolar cycloadditions of ( -phenyl-/V-methylnitrone (585) to Baylis-Hillman adducts such as ( 3-hydroxy-a-methylene esters) (608-610) proceed with complete regioselectivity in good yields to afford the corresponding diastere-omeric 3,5,5-trisubstituted isoxazolines (611-613) (Scheme 2.269). Attack by the dipole in (585) from the less sterically hindered side of dipolarophiles (608-610) affords C-3/C-5 cis isoxazolidines (611a,b-613a,b) as the major products (780). [Pg.346]

The theoretical interpretation of the results was made (334) in terms of the molecular orbital perturbation theory, in particular, of the FMO theory (CNDO-2 method), using the model of the concerted formation of both new bonds through the cyclic transition state. In this study, the authors provided an explanation for the regioselectivity of the process and obtained a series of comparative reactivities of dipolarophiles (methyl acrylate > styrene), which is in agreement with the experimental data. However, in spite of similar tendencies, the experimental series of comparative reactivities of nitronates (249) toward methyl acrylate (250a) and styrene (250b) are not consistent with the calculated series (see Chart 3.17). This is attributed to the fact that calculation methods are insufficiently correct and the... [Pg.586]

The general method, that has been widely used for the synthesis of perhydropyrrolo[1,2-6]isoxazoles, is based on a cycloaddition reaction of cyclic nitrones with dipolarophiles. The nitrone is easily available by oxidation of the corresponding hydroxylamine with mercuric chloride. The cycloaddition of nitrone to dipolarophiles is highly regioselective and stereoselective and have been often applied in the total synthesis of natural products <20010L1367, 2004BML3967, 2005JOC3157>. As one representative example of dipolar cycloaddition, reaction... [Pg.67]

The 3 + 2-cycloaddition of 1,2-dithiophthalides with nitrilimines yields benzo[c]thio-phenespirothiadiazoles regioselectively. The azomethineimines isoquinolinium-iV-aryllimide and A-(2-pyridyl)imide readily undergo 1,3-dipolar cycloaddition with electron-deficient dipolarophiles, dimethyl fumarate and dimethyl maleate, to yield tetrahydropyrazolo[5,l-a]isoquinolines in high yield. ° The 1,3-dipolar cycloadditions of electron-poor 1,3-dipoles, bicyclic azomethine ylides (27), with ( )-l-A,A-dimethylaminopropene to yield cycloadducts (28) and (29) are examples of non-stereospecific cycloadductions (Scheme 9). The synthesis of protected... [Pg.457]


See other pages where Dipolarophiles regioselectivity is mentioned: [Pg.293]    [Pg.1079]    [Pg.293]    [Pg.293]    [Pg.1079]    [Pg.293]    [Pg.55]    [Pg.56]    [Pg.647]    [Pg.145]    [Pg.275]    [Pg.150]    [Pg.529]    [Pg.529]    [Pg.535]    [Pg.176]    [Pg.251]    [Pg.282]    [Pg.414]    [Pg.433]    [Pg.49]    [Pg.291]    [Pg.318]    [Pg.212]    [Pg.222]    [Pg.223]    [Pg.236]    [Pg.223]    [Pg.22]    [Pg.24]    [Pg.35]    [Pg.51]    [Pg.352]    [Pg.374]    [Pg.383]    [Pg.588]    [Pg.430]    [Pg.41]   
See also in sourсe #XX -- [ Pg.109 ]

See also in sourсe #XX -- [ Pg.109 ]




SEARCH



Dipolarophile

Regioselectivity chiral dipolarophiles

© 2024 chempedia.info