Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipolar regioselectivity

The regioselectivity benefits from the increased polarisation of the alkene moiety, reflected in the increased difference in the orbital coefficients on carbon 1 and 2. The increase in endo-exo selectivity is a result of an increased secondary orbital interaction that can be attributed to the increased orbital coefficient on the carbonyl carbon ". Also increased dipolar interactions, as a result of an increased polarisation, will contribute. Interestingly, Yamamoto has demonstrated that by usirg a very bulky catalyst the endo-pathway can be blocked and an excess of exo product can be obtained The increased di as tereo facial selectivity has been attributed to a more compact transition state for the catalysed reaction as a result of more efficient primary and secondary orbital interactions as well as conformational changes in the complexed dienophile" . Calculations show that, with the polarisation of the dienophile, the extent of asynchronicity in the activated complex increases . Some authors even report a zwitteriorric character of the activated complex of the Lewis-acid catalysed reaction " . Currently, Lewis-acid catalysis of Diels-Alder reactions is everyday practice in synthetic organic chemistry. [Pg.12]

Frontier molecular orbital theory correctly rationalizes the regioselectivity of most 1,3-dipolar cycloadditions (73JA7287). When nitrile ylides are used as 1,3-dipoles, the dipole... [Pg.55]

When both the 1,3-dipoIe and the dipolarophile are unsymmetrical, there are two possible orientations for addition. Both steric and electronic factors play a role in determining the regioselectivity of the addition. The most generally satisfactory interpretation of the regiochemistry of dipolar cycloadditions is based on frontier orbital concepts. As with the Diels-Alder reaction, the most favorable orientation is that which involves complementary interaction between the frontier orbitals of the 1,3-dipole and the dipolarophile. Although most dipolar cycloadditions are of the type in which the LUMO of the dipolarophile interacts with the HOMO of the 1,3-dipole, there are a significant number of systems in which the relationship is reversed. There are also some in which the two possible HOMO-LUMO interactions are of comparable magnitude. [Pg.647]

The regioselectivity of 1,3-dipolar cycloadditions can also be analyzed by MO calculations on transition-state models. For example, there are two possible regioisomers from the reaction of diazomethane and methyl vinyl ether, but only the 3-methoxy isomer is formed. [Pg.648]

Diethylamino-4-(4-methoxyphenyl)-isothiazole 5,5-dioxide 6 is (95T(51)2455) a highly reactive partner in 1,3-dipolar cycloadditions with several dipoles. Azomethine yhdes, such as oxazolones 7 and miinchnones 8, afforded with 6 bicychc pyrrolo[3,4-d]isothiazole 5,5-dioxides 9, 10, 11 in satisfactory yield. The regioselectivity of the reaction was excellent. The thermal behavior of these new bicychc systems was investigated. When heated at their melting point or shghtly above, triarylpyrroles 12, 13 were obtained through SOj and AtiV-diethylcyanamide ehmination. [Pg.73]

The TiX2-TADD0Late-catalyzed 1,3-dipolar q cloaddition reactions were extended to include an acrylate derivative [66]. In the absence of a catalyst, the reaction between nitrones 1 and acryloyl oxazolidinone 19b proceeded to give a mixture all eight regio-and stereoisomers (Scheme 6.23). However, application of in this case only 10 mol% of Ti(OTs)2-TADDOLate 23d as catalyst for the reaction of various nitrones 1 with alkene 19b, led to complete regioselectivity and high endo selectivity in the reaction and the endo products 21 were obtained with 48-70% ee (Scheme 6.23) [66]. [Pg.229]

In 2000, it was proposed that the regioselectivity of the [3 + 2] cycloaddition of fullerenes could be modified under microwave irradiation. Under conventional heating, N-methylazomethine yhde and fullerene-(C7o) gave three different isomeric cycloadducts because of the low symmetry of C70 vs. Ceo. Using microwave irradiation and o-dichlorobenzene as a solvent, only two isomers were obtained, the major cycloadduct 114 being kinetically favored (Scheme 39) [75]. The same authors had previously reported the 1,3-dipolar cyclo addition of pyrazole nitrile oxides, generated in situ, to Geo under either conventional heating or microwave irradiation. The electrochemical characteristics of the cycloadduct obtained with this method made this product a candidate for photophysical apphcations [76]. [Pg.235]

The authors have also elaborated a microwave-enhanced one-pot procedure [90] for the Huisgen 1,3-dipolar cycloaddition reaction. In a typical procedure, a pyrazinone with a triple bond connected to the core via C - O linkage, was reacted with a suitable benzylic bromide and NaNs in presence of the Cu(I) catalyst in a t Bu0H/H20 system under microwave irradiation (Scheme 26). The cycloaddition was found to proceed cleanly and with full regioselectivity. As the azide is generated in situ, this procedure avoids the isolation and purification of hazardous azides, which is especially important when handling the ahphatic ones, which are known to be toxic and explosive in nature. [Pg.287]

The NHCs have been used as ligands of different metal catalysts (i.e. copper, nickel, gold, cobalt, palladium, rhodium) in a wide range of cycloaddition reactions such as [4-1-2] (see Section 5.6), [3h-2], [2h-2h-2] and others. These NHC-metal catalysts have allowed reactions to occur at lower temperature and pressure. Furthermore, some NHC-TM catalysts even promote previously unknown reactions. One of the most popular reactions to generate 1,2,3-triazoles is the 1,3-dipolar Huisgen cycloaddition (reaction between azides and alkynes) [8]. Lately, this [3h-2] cycloaddition reaction has been aided by different [Cu(NHC)JX complexes [9]. The reactions between electron-rich, electron-poor and/or hindered alkynes 16 and azides 17 in the presence of low NHC-copper 18-20 loadings (in some cases even ppm amounts were used) afforded the 1,2,3-triazoles 21 regioselectively (Scheme 5.5 Table 5.2). [Pg.134]

The 2-diazopropane 59 reacts at 0 °C in dichloromethane with the imidate 60a to give exclusively the adduct 61a after 10 h of reaction. This compound results from the regioselective 1,3-dipolar cycloaddition of the 2-diazopropane to the imidate C - N bond (Scheme 13). [Pg.142]

In conclusion, we have been successful in developing a new method for the synthesis of [ 1,2,3]-triazoles by regioselective 1,3-dipolar cycloaddition of 2-diazopropane with imidates 60 in good yields. [Pg.143]

We now report the synthesis of new antibacterial 3H-pyrazoles by regioselective 1,3-dipolar cycloaddition of the versatile 2-diazopropane to nonprotected disubstituted propargyl alcohols and that the unsubstituted propar-gyl alcohol allows the double addition of 2-diazopropane and gives a 3H-pyrazole with formal insertion of the dimethylcarbene into a carbon-carbon bond. We also show that the photolysis of the 3H-pyrazoles leads to new alcohols containing the cyclopropenyl unit. [Pg.144]

Whereas the Rh2(OAc)4-catalyzed addition of diazoalkanes to propargyl alcohols readily gives the insertion of the carbene into the 0-H bond, with only a small amoimt of cyclopropenation of the resulting propargylic ether [54] the 2-diazopropane 59 reacts at 0 °C with l,l-diphenyl-2-propyn-l-ol 62a in dichloromethane and exclusively gives, after 10 h of reaction, only the adduct 63a isolated in 75% yield and corresponding to the regioselective 1,3-dipolar cycloaddition of the 2-diazopropane to the alkyne C - C bond (Scheme 15). [Pg.144]

Analogously, the 1,3-dipolar cycloaddition reaction of 2-diazopropane with propargyl alcohol 62b, performed at 0 °C in dichloromethane, was completed in less then 10 h and led to a monoadduct 63b with the same regioselective addition mode of 59 to the triple bond. The HMBC spectrum showed correlations between the ethylenic proton and the carbons C3 and C5 and between the methyl protons and the carbons C3 and C4. [Pg.145]

Fig. 6.12. Prediction of regioselectivity of 1,3-dipolar cycloaddition on the basis of FMO theory. The energies of the HOMO and LUMO of the reactants (in eV) are indicated in parentheses. Fig. 6.12. Prediction of regioselectivity of 1,3-dipolar cycloaddition on the basis of FMO theory. The energies of the HOMO and LUMO of the reactants (in eV) are indicated in parentheses.
Dipolar addition to nitroalkenes provides a useful strategy for synthesis of various heterocycles. The [3+2] reaction of azomethine ylides and alkenes is one of the most useful methods for the preparation of pyrolines. Stereocontrolled synthesis of highly substituted proline esters via [3+2] cycloaddition between IV-methylated azomethine ylides and nitroalkenes has been reported.147 The stereochemistry of 1,3-dipolar cycloaddition of azomethine ylides derived from aromatic aldehydes and L-proline alkyl esters with various nitroalkenes has been reported. Cyclic and acyclic nitroalkenes add to the anti form of the ylide in a highly regioselective manner to give pyrrolizidine derivatives.148... [Pg.274]

Acyl-substituted quinolizinium ylide 63 was obtained by treatment of its 1,2-dihydro analogue with 2,3-dichloro-5,6-dicyano-l,4-benzoquinone (DDQ). Its 1,3-dipolar cycloaddition with an acetylenic ester in excess was regioselective and was accelerated in polar solvents yielding the intermediate adduct 64 and finally the corresponding cyclazine 65, as shown in Scheme 2 <2001JOC1638>. [Pg.14]

Dihydroisoxazoles 628 substituted at C-4 with keto, aldehyde, or ester functions on irradiation give stable azomethine ylides 629, the first isolable azomethine ylides of this type with stabilizing groups at only one terminus of the 1,3-dipolar system. The starting annulated 2,3-dihydroisoxazoles are obtained in 60-80% yield by regioselective... [Pg.454]


See other pages where Dipolar regioselectivity is mentioned: [Pg.55]    [Pg.647]    [Pg.165]    [Pg.183]    [Pg.145]    [Pg.216]    [Pg.325]    [Pg.100]    [Pg.762]    [Pg.454]    [Pg.24]    [Pg.128]    [Pg.285]    [Pg.286]    [Pg.288]    [Pg.289]    [Pg.291]    [Pg.1061]    [Pg.251]    [Pg.150]    [Pg.141]    [Pg.144]    [Pg.145]    [Pg.890]    [Pg.133]    [Pg.135]    [Pg.191]    [Pg.179]    [Pg.383]    [Pg.426]    [Pg.433]    [Pg.16]   
See also in sourсe #XX -- [ Pg.439 ]




SEARCH



1.3- Dipolar cycloaddition regioselectivity

1.3- dipolar cycloaddition reactions regioselective addition

1.3- dipolar cycloadditions regioselectivity

Dipolar cycloaddition reactions regioselectivity

Dipolar cycloaddition, regioselective

Nitrones, 1,3-dipolar cycloadditions, regioselectivity

Regioselectivity nitrone 1,3-dipolar cycloadditions

Regioselectivity of 1,3-dipolar cycloadditions

© 2024 chempedia.info