Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipolar interactions dispersion

Chemical secondary bonding. Low-energy bonds, dipolar interactions, dispersion may all play an important role in the development of interfacial adhesion. [Pg.1011]

Dispersion forces, dipole Interactions, and hydrogen bonds all are significantly weaker than covalent Intramolecular bonds. For example, the average C—C bond energy Is 345 kJ/mol, whereas dispersion forces are just 0.1 to 5 kJ/mol for small alkanes such as propane. Dipolar Interactions between polar molecules such as ace-tone range between 5 and 20 kJ/mol, and hydrogen bonds range between 5 and 50 kJ/mol. [Pg.769]

The molecules (or atoms, for noble gases) of a molecular solid are held In place by the types of forces already discussed In this chapter dispersion forces, dipolar interactions, and/or hydrogen bonds. The atoms of a metallic solid are held in place by the delocalized bonding described in Section 10-. A network solid contains an array of covalent bonds linking every atom to its neighbors. An ionic solid contains cations and anions, attracted to one another by electrical forces as described in Section 8-. [Pg.775]

For spin-f nuclei, dipolar interactions may be modulated by intramolecular (DF, reorientation etc.) and/or intermolecular (TD) processes. In general, the intra- and inter-molecular processes can produce quite different Tj frequency dispersion curves. In practice, NMR field cycling experiments are often needed to extend the frequency domain from those employed in conventional spectrometers to a lower frequency range (i.e., the kHz regime) for unambiguous separation (and identification) of different relaxation mechanisms. The proton spin relaxation by anisotropic TD in various mesophases has been considered by Zumer and Vilfan.131 133,159 In the nematic phase, Zumer and Vilfan found the following expression for T ... [Pg.106]

To fully characterize and categorize the solute selectivities of GC stationary phases, Rohrschneider and McRe5molds pioneered one of the earliest characterization methods [5,6]. The Rohrschneider-McReynolds system is the oldest and widely accepted stationary phase classification systems that is based on the retention of five probe molecules namely, benzene, bufanol, 2-penfanone, nifropropane, and pyridine. Each probe molecule is used to represenf a disfincf or a combination of interactions with the stationary phase. Benzene measures dispersive interactions with weak proton acceptor properties butanol measures dipolar interactions with both proton donor and proton acceptor capabilities 2-pentanone measures dipolar interactions with proton acceptor but not proton donor capabilities nitropropane measures weak dipolar interactions and pyridine measures weak dipolar interactions with strong proton acceptor but not proton donor capabilities. [Pg.141]

Once the Curie contribution to R2M is estimated and subtracted, the contribution of contact and dipolar interactions can be estimated by examining the correlation time dependence of the paramagnetic relaxation depicted in Figs. 3.9 and 3.11. It appears that the maximum for R m occurs at dipolar term and at contact term. Taking for simplicity xf Ip = r °", this means that in the intermediate situation where ft>s T p > 1 > relative importance of the contact term is even smaller than that estimated in the fast motion limit. The equation for R2M has non-dispersive terms in both the dipolar and contact contributions (accounting for one-fifth and one-half of the total effect measured in the fast motion limit respectively), and therefore the conclusions drawn in the fast motion limit are still qualitatively correct. [Pg.107]

Experimentally, one of the main methods of distinction between the Forster and Dexter mechanisms in an energy transfer is a study of the distance dependence of the observed process. From Equation (2.32) it is evident that the rate of dipole-induced energy transfer, kfen/ decreases as d 6. This is typical of dipolar interactions and is reminiscent of the distance dependence of other such mechanisms, e.g. London dispersion forces. Therefore, the Forster mechanism can operate over large distances, whereas, in contrast, the rate of Dexter energy transfer, kden, falls off exponentially with distance. [Pg.45]

The problem is to discuss the generalized polarizability ae(1.49) with the matrix a 1 not commuting with that of the dipolar interactions, 0. To show that the pure retarded interactions may be discarded in the dynamics of mixed crystals, we assume here that the coulombic interactions are suppressed in (ft. The interaction tensor is then reduced to its retarded term (1.74). Then the dispersion is given by (1.35) ... [Pg.235]

In addition to the repulsive electrostatic interactions, two isolated identical particles immersed in a solvent of different index of refraction, experience an attractive interaction, namely, the van der Walls or dispersion forces, which arise from the induced dipolar interactions between the molecules constituting the two particles. This interaction depends on the geometry (the shape of the particles) and on the material of which the particles are made of. For two spherical particles, the van der Waals interparticle potential uyj(r) is given by... [Pg.8]

On the other hand, molecular crystals are characterized by the existence of strongly bound (Frenkel type) excitons, and it has been shown that the lower-energy part of the absorption spectrum (say, the first 2 eV) is completely dominated by these excitons [168], even to the extent that the absorption corresponding to electron-hole pair generation is completely hidden in the exciton spectrum [128] and is revealed only by such methods as modulated electrorefletance [169]. The only states in the exciton bands that are accessible by photon absorption are those at the center of the Brillouin zone, so the absorption is not a continuous band as for semiconductors, but a sharp line. The existence of this sharp line therefore does not mean that the exciton band is narrow (i.e., that its dispersion relation in the Brillouin zone is flat). On the contrary, since that dispersion is caused by dipolar interactions, exciton bandwidths can be several eV [168,170] the total bandwidth is four times the coupling term. This will be particularly... [Pg.586]

The procedures outlined have a practical use. but it should be realized that the subparameter models have some empirical elements. Assumptions such as the geometric mean rule (Eq. 12-6) for estimating interaction energies between unlike molecules may have some validity for dispersion forces but are almost certainly incorrect for dipolar interactions and hydrogen bonds. Experimental uncertainties are also involved since solubility loops only indicate the limits of compatibility and always include doubtful observations. Some of the successes and limitations of various versions of the solubility parameter model are mentioned in passing in the following sections which deal brielly with several important polymer mixtures. [Pg.460]


See other pages where Dipolar interactions dispersion is mentioned: [Pg.215]    [Pg.86]    [Pg.328]    [Pg.776]    [Pg.231]    [Pg.150]    [Pg.543]    [Pg.50]    [Pg.99]    [Pg.35]    [Pg.191]    [Pg.43]    [Pg.109]    [Pg.306]    [Pg.216]    [Pg.377]    [Pg.41]    [Pg.42]    [Pg.130]    [Pg.6]    [Pg.127]    [Pg.217]    [Pg.476]    [Pg.124]    [Pg.313]    [Pg.156]    [Pg.289]    [Pg.99]    [Pg.467]    [Pg.191]    [Pg.13]    [Pg.2]   
See also in sourсe #XX -- [ Pg.252 , Pg.276 ]




SEARCH



Dipolar interactions

Dispersion interaction

Dispersive interactions

Dispersive interactions interaction

© 2024 chempedia.info