Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipolar cycloadditions with azides

Use of unsubstituted acetylene as a substrate in 1,3-dipolar cycloadditions with azides results in 4,5-unsubstituted triazoles. The reactions have to be carried out under pressure. In an example given in Equation (23) showing synthesis of an antibacterial agent, a solution of azide 1049 in dimethoxyethane is transferred to a pressure bomb that is then charged with acetylene and heated at 90 °C for 12 h to give triazole derivative 1050 in 74% yield <2003BMC35>. [Pg.117]

After acetylenedicarboxylates, esters of propiolic acid are the second common group of reagents for 1,3-dipolar cycloaddition with azides. They react fast, and the yields of products are high. However, because the reacting... [Pg.119]

Alkenic bonds undergo 1,3-dipolar cycloadditions with azides to give A -l,2,3-triazolines. Azides can add to a wide range of angle-strained, unstrained, and inactivated double bonds to electron-... [Pg.105]

Another interesting type of 1,3-dipolar cycloaddition with azides involves condensation with nitriles as dipolarophiles to form tetrazoles. These products are of particular interest to the medicinal chemist, because they probably constitute the most commonly used bioisostere of the carboxyl group. Reaction times of many hours are typically required for the palladium-catalyzed cyanation of aryl bromides under the action of conventional heating. The subsequent conversion of nitriles to tetrazoles requires even longer reaction times of up to 10 days to achieve completion. Under microwave irradiation conditions, however, the nitriles are rapidly and smoothly converted to tetrazoles in high yields. An example of a one-pot reaction is shown in Scheme 11.54 [110], in which the second step, i.e. the cycloaddition, was achieved successfully under the action of careful microwave irradiation. The flash heating method is also suitable for conversion of 212 and 214 to tetrazoles 213 and 215, respectively, on a solid support, as shown in Scheme 11.54. [Pg.566]

A number of approaches to tetrakis(trifluoromethyl)-pyrroles was developed using tetrakis(trifluoro-methyl)-Dewar-thiophene (183) [71]. The 1,3-dipolar cycloaddition with azides led to the tricyclic thiiranes 184. Subsequent desulfurization by treatment with PPha afforded the cyclobutenes 185 in good to quantitative yields. The result of thermolysis of 185 was strongly depended on the substituent on the amine nitrogen. Pyrroles 188 were formed in high yields (cases a and d), while only cyclopropene 189, or a mixture of 188 and 189 (cases b and c) were isolated. Pyrrole 188a was also synthesized by the reaction of 183 with aniline in 19 % yield [72]. [Pg.74]

The interaction of diazomethane with 1-azirines was the first example of a 1,3-dipolar cycloaddition with this ring system (64JOC3049, 68JOC4316). 1,3-Dipolar addition produces the triazoline adduct (87). This material can exist in equilibrium with its valence tautomer (88), and allylic azides (89) and (90) can be produced from these triazolines by ring cleavage. [Pg.60]

Unactivated aziridines, such as 24, are not as reactive as their N-sulfonyl analogues. Nevertheless, in aqueous conditions they react with different nucleophiles, as Scheme 12.23 illustrates. Treatment with buffered azide at 50 °C gave 25 in 90% yield. Hydrazine proved potent even at room temperature and 26 was fonned in 95 % yield, while phenyltetrazole required heating at reflux in water. The resulting amines participated in dipolar cycloadditions with alkynes and condensations with P-diketones. [Pg.469]

The ring-opening process leading to 164 (route a) is analogous to that which has been demonstrated to follow the cycloadditions of tosyl azide to certain enamines176. Similar results have been reported for the reaction of 2,3-diphenylcyclopropenone with 2-diazopropane177. Other 1,3-dipolar cycloadditions with thiirene dioxides could also be affected (see below). [Pg.427]

A microwave-assisted three-component reaction has been used to prepare a series of 1,4-disubstituted-1,2,3-triazoles with complete control of regiose-lectivity by click chemistry , a fast and efficient approach to novel functionalized compounds using near perfect reactions [76]. In this user-friendly procedure for the copper(l) catalyzed 1,3-dipolar cycloaddition of azides and alkynes, irradiation of an alkyl halide, sodium azide, an alkyne and the Cu(l) catalyst, produced by the comproportionation of Cu(0) and Cu(ll), at 125 °C for 10-15 min, or at 75 °C for certain substrates, generated the organic azide in situ and gave the 1,4-disubstituted regioisomer 43 in 81-93% yield, with no contamination by the 1,5-regioisomer (Scheme 18). [Pg.45]

Dipolar cycloaddition of azides with olefins provides a convenient access to triazolines, cyclic imines, and aziridines and hence is a valuable technique in heterocyclic synthesis. For instance, tricyclic -lactams 273 - 276 have been synthesized using the intramolecular azide-olefin cycloaddition (lAOC) methodology (Scheme 30) [71]. [Pg.39]

Recently, Li et al. have reported an efficient 1,3-dipolar cycloaddition of azides with electron-deficient alkynes without any catalysts at room temperature in water.128 The reaction has been applied successfully to the coupling of an azido-DNA molecule with electron-deficient alkynes for the formation of [l,2,3]-triazole heterocycle (Eq. 4.66). [Pg.135]

By combining several click reactions, click chemistry allows for the rapid synthesis of useful new compounds of high complexity and combinatorial libraries. The 2-type reaction of the azide ion with a variety of epoxides to give azido alcohols has been exploited extensively in click chemistry. First of all, azido alcohols can be converted into amino alcohols upon reduction.70 On the other hand, aliphatic azides are quite stable toward a number of other standard organic synthesis conditions (orthogonality), but readily undergo 1,3-dipolar cycloaddition with alkynes. An example of the sequential reactions of... [Pg.159]

Triazole derivatives are very interesting compounds that can be prepared by 1,3-dipolar cycloadditions between azides and alkynes. Loupy and Palacios reported that electron-deficient acetylenes react with azidoethylphosphonate 209 to form the regioisomeric substituted 1,2,3-triazoles 210 and 211 under microwaves in solvent-free conditions (Scheme 9.65) [114]. This procedure avoids the harsh reaction conditions associated with thermal cycloadditions (toluene under reflux) and the very long reaction times. [Pg.333]

Azide 367 is prepared from 4-r -butyl-2-nitroaniline in 76% yield by its diazotization followed by treatment with sodium azide. In a 1,3-dipolar cycloaddition with cyanoacetamide, azide 367 is converted to triazole 368 that without separation is directly subjected to Dimroth rearrangement to give derivative 369 in 46% yield. Reduction of the nitro group provides ortfc-phenylenediamine 371 in 91% yield <2000EJM715>. Cyclocondensation of diamine 371 with phosgene furnishes benzimidazol-2-one 370 in 39% yield, whereas its reaction with sodium nitrite in 18% HC1 leads to benzotriazole derivative 372, which is isolated in 66% yield (Scheme 59). Products 370 and 372 exhibit potassium channel activating ability <2001FA841>. [Pg.48]

Derivative 165 was treated with tosyl azide at room temperature for 48 h to give 167. Formation of this product was rationalized by a 1,3-dipolar cycloaddition with participation of the C=C bond in the pyrimidine ring in 165 to form a cycloadduct 166 at first, which underwent a [l,2]-methyl shift and a nitrogen elimination to yield 167. Stmcture elucidation of this product revealed the relative rzr-stereochemistry of the phenyl and methyl substituents. [Pg.691]

Cycloaddition of p-methoxyphenyl azide to alkynic dipolarophiles at room temperature gives triazoles (697) and (698) (Equation (54)). A regiospecific addition is only observed in the case of Z = CH(OMe)2 <89H(29)967>. Phenyl azide and substituted benzyl azides undergo 1,3-dipolar cycloadditions with DM AD, phenylacetylene, and ethyl propiolate to afford 1-phenyl- and 1-benzyl-... [Pg.101]

Since the discovery of triazole formation from phenyl azide and dimethyl acetylenedicarboxylate in 1893, synthetic applications of azides as 1,3-dipoles for the construction of heterocychc frameworks and core structures of natural products have progressed steadily. As the 1,3-dipolar cycloaddition of azides was comprehensively reviewed in the 1984 edition of this book (2), in this chapter we recount developments of 1,3-dipolar cycloaddition reactions of azides from 1984 to 2000, with an emphasis on the synthesis of not only heterocycles but also complex natural products, intermediates, and analogues. [Pg.623]

The stereoselective intermolecular cycloaddition of azides to chiral cyclopenta-none enamines was reported, but both product yields and enantiomeric excesses (ee) were low (24) (Scheme 9.24). Ethyl azidoformate (115) and A-mesyl azido-formamimidate (116) underwent 1,3-dipolar cycloaddition with the monosubsti-tuted chiral enamine 114 to give products 117 and 118 in low yields with ee of 24 and 18%, respectively. Intermolecular cycloaddition of the A-mesyl azidoforma-mhnidate 116 with the disubstituted C2-symmetric chiral enamine 119 proceeded with good diastereoselectivity to give compound 120 in 18% yield. On cleavage of the enamine unit, compound 120 afforded 118 with low ee. [Pg.636]

Vogel and Delavier (26) reported a synthesis of the 6-azabicyclo[3.2.2]nonane skeleton 130 using an intramolecular azide-alkene cycloaddition strategy (Scheme 9.26). When refluxed in xylene, the azide 126 underwent an intramolecular 1,3-dipolar cycloaddition with the internal alkene. Nitrogen extrusion and subsequent rearrangement led to a mixmre of compounds 128, 129, and 130. Reactions of azides with the double bond of dienes were also used in various total syntheses of alkaloids, and will be discussed later in Section 9.2.2. [Pg.637]

The synthesis of the 2-triazolylpyrimido[l,2,3-cti]purine-8,10-diones 172 and 173 was achieved using the 1,3-dipolar cycloaddition of azides with the terminal... [Pg.642]

Hlasta and Ackerman (72) reported a synthesis of the triazoles 379, related to the human leuokocyte elastase inhibitor WIN 62225 (380), based on an inter-molecular 1,3-dipolar cycloaddition of the azide 378 with alkynes (Scheme 9.72). They also investigated in detail the effect of steric and electronic factors on the regioselectivity of the cycloaddition reaction. (Azidomethyl)benzisothiazolone (378) underwent smooth 1,3-dipolar cycloaddition with various disubstituted acetylenes to give the corresponding triazoles (379) in 37-84% yields. Electron-deficient acetylenic dipolarophiles reacted more rapidly with the azide to give the respective triazoles. [Pg.672]

The 1,3-dipolar cycloaddition of azides combined with further synthetic transformations is a highly useful reaction for the synthesis of heterocycles and natural products. Even though the chemistry of azide cycloadditions has been known for... [Pg.676]

Compound 156 (prepared by reaction of tetrabromocyclopropene and 2,5-dimethylfuran) underwent dipolar cycloaddition with phenyl azide to produce the fused triazole 157. The reaction was carried out in dichloromethane at room temperature over 2 days. This lower reaction temperature allowed for the isolation of the adduct 157, which was established by X-ray crystallographic analysis to be the product of ct>-selective addition. Heating triazole 157 in benzene at reflux for 2 h resulted in ring expansion producing a 1 1 mixture of compounds 158 and 159 (Scheme 16) <2004JOC570>. [Pg.150]

Fleet and co-workers (75a) synthesized various tetrazoles from manno- and rhamnopyranoses, as well as furanoses, based on the intramolecular 1,3-dipolar cycloadditions of azides with nitriles (Scheme 9.75). All of these tetrazoles were tested for their inhibitory activities toward both glycosidases and other sugarprocessing enzymes. D-Mannopyranotetrazole (397) was prepared from L-gluono-lactone (393). Azide 394 on ring opening with ammonia followed by dehydration with trifluoroacetic anhydride gave the azido nitrile 395. Intramolecular 1,3-dipolar cycloaddition of 395 in refluxing toluene followed by deprotection produced the D-mannopyranotetrazole 397 in 86% overall yield. [Pg.514]


See other pages where Dipolar cycloadditions with azides is mentioned: [Pg.66]    [Pg.264]    [Pg.4]    [Pg.192]    [Pg.246]    [Pg.66]    [Pg.264]    [Pg.4]    [Pg.192]    [Pg.246]    [Pg.1105]    [Pg.226]    [Pg.46]    [Pg.105]    [Pg.107]    [Pg.675]    [Pg.850]    [Pg.155]    [Pg.18]    [Pg.696]    [Pg.465]    [Pg.218]    [Pg.219]   
See also in sourсe #XX -- [ Pg.114 ]




SEARCH



1.3- dipolar cycloaddition reactions with azides

Azides 1,3-dipolar cycloadditions

Azides cycloaddition

Azides cycloadditions

Cycloaddition with

With Azides

© 2024 chempedia.info