Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1,3-Dipolar cycloadditions methyl crotonate

Other approaches to (36) make use of (37, R = CH ) and reaction with a tributylstannyl allene (60) or 3-siloxypentadiene (61). A chemicoen2ymatic synthesis for both thienamycia (2) and 1 -methyl analogues starts from the chiral monoester (38), derived by enzymatic hydrolysis of the dimethyl ester, and proceeding by way of the P-lactam (39, R = H or CH ) (62,63). (3)-Methyl-3-hydroxy-2-methylpropanoate [80657-57-4] (40), C H qO, has also been used as starting material for (36) (64), whereas 1,3-dipolar cycloaddition of a chiral nitrone with a crotonate ester affords the oxa2ohdine (41) which again can be converted to a suitable P-lactam precursor (65). [Pg.8]

Weinreb and co-workers (16) reported a high-pressure-induced 1,3-dipolar cycloaddition of alkyl and phenyl azides with electron-deficient alkenes at ambient temperature. As a representative example, phenyl azide underwent cycloaddition with methyl crotonate (69) at 12 kbar to give the triazoline 70 (43%) and the p-amino diazoester 71 (53%). The high-pressure conditions resulted in high yield and a shorter reaction time (Scheme 9.16). [Pg.631]

Saito et al. (32) developed a tartaric acid derived chiral nitrone 18. In the reaction of 18 with methyl crotonate 19, the 1,3-dipolar cycloaddition product 20 was obtained in an endo/exo ratio of 10 1 and with high diastereofacial induction to give the endo-isomer (Scheme 12.9). [Pg.824]

The formal total synthesis of the novel /3-lactam antibiotic thienamycin has been accomplished from an isoxazoline derivative generated by [3 + 2] dipolar cycloaddition <79H(l2)l 183). Reaction of the nitrile oxide derived from 3-nitropropanal dimethyl acetal with methyl crotonate gave the isoxazoline (477) regio- and stereo-selectively. The isoxazoline was converted to amino ester (478) by hydrogenation and then to /3-lactam (479) by ester saponification and ring closure with DCC. Treatment of (479) with p-nitrobenzyl chloroformate and reaction of the derived acetal (480) with excess N-p-nitrobenzyloxycar-bonylcysteamine gave thioacetal (481), a compound which has previously been converted into ( )-(8S )-thienamycin (Scheme 106). [Pg.458]

Another possible route to thienamycin (487) has utilized the dipolar cycloaddition of 1-pyrroline 1-oxide (482) with methyl crotonate (79TL4359). The reaction is highly stereoselective due to the operation of secondary orbital effects. The isoxazolidine (483), produced in 90% yield, was subjected to hydrogenolysis, and the resulting amino alcohol (484) was selectively blocked with hexamethyldisilazane to give (485). Treatment with ethylmagnesium bromide then gave /3-lactam (486 Scheme 107). [Pg.458]

The Stereoselectivity of 1,3-Dipolar Cycloadditions. There is no endo mle for 1,3-dipolar cycloadditions like that for Diels-Alder reactions. Stereoselectivity, more often than not, is low, as shown by the reactions of C,/V-diphenylnitrone—both regioisomers 6.238 and 6.239 (R=C02Et) from the reaction with ethyl acrylate are mixtures of exo and endo isomers, only a little in favour of the exo product. Similarly, the reactions of methyl crotonate with nitrones favour the exo product 6.242 over the endo 6.243. In contrast, other reactions are endo selective, as in the cycloaddition 6.244 of an azomethine ylid to dimethyl maleate giving largely the endo adduct 6.245. [Pg.252]

The stereochemistry of the 1,3-dipolar cycloaddition of the heteroaromatic iV-imines has been investigated in some detail by using the reaction of phenanthridine N-benzoylimine with a series of activated olefins such as JV-methylmaleimide, maleic anhydride, diethyl maleate, methyl acrylate, methyl methacrylate, and methyl trans-crotonate (e.g., Eq. 30).202 The adducts from the former three have the all-cis stereochemistry. These results are rationalized in terms of secondary molecular orbital interactions. With acrylates such stereospecificity is lost, suggesting that this effect is of lesser importance in these cases (see Table II). [Pg.110]

In contrast to the complete regioselectivity observed in the 1,3-dipolar cycloaddition of nitronate 16b and methyl crotonate 42 or methyl cinnamate 44 shown in Scheme 9.14, the [3 -t 2] cycloaddition of yS-nitrostyrene (15a) and nitronate intermediate 16a was not completely regioselective. Regio-isomers 46 and 47 were formed in 83 % yield, as mixtures of diastereomers, in a 7 3 ratio after the high pressure-promoted domino cycloaddition of enol ether 14 with 2 equiv. fi-nitrostyrene (15a) (15 kbar, RT, 18 h, Scheme 9.15). The formation of regio-isomer 46 as major product was rather unexpected, since comparable 1,3-dipolar cycloadditions of nitrones and nitroalkenes [25] showed the opposite regio-isomer to be formed predominantly. This nitroso acetal (46) was converted to )S-lactam (48) via a base-catalyzed rearrangement (Scheme 9.16). This conversion appeared applicable to different hi- and tricyclic nitroso acetals and led to the formation of a novel class of bi- and tricyclic yS-lactams [26]. [Pg.293]

Stereoselectivity of l S-Dipolar Cydoaddition. The stereoselectivity of the intermolecular cycloaddition of an acyclic nitrone to an alkene is difficult to predict, and wotdd appear to be susceptible to minor structural changes in either component (13). The chiral 2,2-dimethyl-l,3-dioxolan-4-yl nitrone showed only modest astereoface selectivity in its addition to methyl crotonate (14). However, the more hindered tetramethyl-l,3-dioxolan-4-yl nitrone was more selective. [Pg.162]

Dipolarophiles which contain an electron-deficient substituent undergo smooth cycloaddition reactions with nitrile ylides. The relative reactivity of the nitrile ylide toward a series of dipolarophiles is determined primarily by the extent of stabilization afforded the transition state by interaction of the dipole highest-occupied (HO) and dipolarophile lowest-unoccupied (LU) orbitals. Substituents which lower the dipolarophile LU energy accelerate the 1,3-dipolar cycloaddition reaction. For example, fumaronitrile undergoes cycloaddition at a rate which is 189,000 times faster than methyl crotonate. Ordinary olefins react so sluggishly that their bimolecular rate constants cannot be measured. [Pg.62]


See other pages where 1,3-Dipolar cycloadditions methyl crotonate is mentioned: [Pg.442]    [Pg.2147]    [Pg.85]   
See also in sourсe #XX -- [ Pg.336 ]




SEARCH



Croton

Crotonate

Crotonates

Crotonic

Crotonization

Cycloaddition crotonate

Methyl crotonate

© 2024 chempedia.info