Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1,3-dipolar cycloaddition imines

Dipolar cycloaddition reactions with azides, imines, and nitrile oxides afford synthetic routes to nitrogen-containing heterocycles (25—30). [Pg.246]

Asymmetric dipolar cycloaddition of azomethine imines derived from diazoal-kane-pyridazine cycloadducts 98JHC1187. [Pg.260]

An example of 1,3-dipolar cycloaddition involving a thiazole dioxide derivative was described (99T(55)201). A-Benzoyl-(R)-thiazolidin-4-carboxylic acid 5,5-dioxide 120 was cyclized to the bicylic mesoionic thiazolo-oxazolium 5,5-dioxide with Ac O and reacted with the imine 121 in DMF... [Pg.86]

The azomethine imine 6.39 reacts readily to give various 1,3-dipolar cycloaddition products (Huisgen and Eckell, 1977 for the naming of cycloadditions see Huisgen 1968). [Pg.128]

Abstract The photoinduced reactions of metal carbene complexes, particularly Group 6 Fischer carbenes, are comprehensively presented in this chapter with a complete listing of published examples. A majority of these processes involve CO insertion to produce species that have ketene-like reactivity. Cyclo addition reactions presented include reaction with imines to form /1-lactams, with alkenes to form cyclobutanones, with aldehydes to form /1-lactones, and with azoarenes to form diazetidinones. Photoinduced benzannulation processes are included. Reactions involving nucleophilic attack to form esters, amino acids, peptides, allenes, acylated arenes, and aza-Cope rearrangement products are detailed. A number of photoinduced reactions of carbenes do not involve CO insertion. These include reactions with sulfur ylides and sulfilimines, cyclopropanation, 1,3-dipolar cycloadditions, and acyl migrations. [Pg.157]

Dipolar [3 + 2] cycloadditions are one of the most important reactions for the formation of five-membered rings [68]. The 1,3-dipolar cycloaddition reaction is frequently utihzed to obtain highly substituted pyrroHdines starting from imines and alkenes. Imines 98, obtained from a-amino esters and nitroalkenes 99, are mixed together in an open vessel microwave reactor to undergo 1,3-dipolar cycloaddition to produce highly substituted nitroprolines esters 101 (Scheme 35) [69]. Imines derived from a-aminoesters are thermally isomerized by microwave irradiation to azomethine yhdes 100,... [Pg.232]

Dipolar cycloaddition of azides with olefins provides a convenient access to triazolines, cyclic imines, and aziridines and hence is a valuable technique in heterocyclic synthesis. For instance, tricyclic -lactams 273 - 276 have been synthesized using the intramolecular azide-olefin cycloaddition (lAOC) methodology (Scheme 30) [71]. [Pg.39]

The overall pathway for the conversion of the unsaturated azido ether 281 to 2,5-dihydrooxazoles 282 involves first formation of the dipolar cycloaddition product 287, which thermolyzes to oxazoline 282 or is converted by silica gel to oxazolinoaziridine 288. While thermolysis or acid-catalyzed decomposition of triazolines to a mixture of imine and aziridine is well-documented [71,73], this chemoselective decomposition, depending on whether thermolysis or exposure to silica gel is used, is unprecedented. It is postulated that acidic surface sites on silica catalyze the triazoline decomposition via an intermediate resembling 289, which prefers to close to an aziridine 288. On the other hand, thermolysis of 287 may proceed via 290 (or the corresponding diradical) in which hydrogen migration is favored over ring closure. [Pg.42]

In 2007, a novel C2-symmetric diphenylthiophosphoramide ligand was found to be a fairly efficient chiral ligand for the Cu(I)-promoted 1,3-dipolar cycloaddition of imines and pyrrole-2,5-dione derivatives to give the corresponding adducts in moderate to good enantioselectivities and good yields (Scheme 10.14). ... [Pg.303]

The other reactant in a dipolar cycloaddition, usually an alkene or alkyne, is referred to as the dipolarophile. Other multiply bonded functional groups such as imine, azo, and nitroso can also act as dipolarophiles. The 1,3-dipolar cycloadditions involve four it electrons from the 1,3-dipole and two from the dipolarophile. As in the D-A reaction, the reactants approach one another in parallel planes to permit interaction between the tt and tt orbitals. [Pg.527]

It is well known that azomethine ylides, which are usually formed in situ, are very good substrates for 1,3-dipolar cycloadditions. The group of Novikov and Khlebnikov [328] generated such a 1,3-dipol by reaction of difluorocarbene formed from CBr2F2 (2-626) with the imine 2-627. Cycloaddition of the obtained 2-629 with an ac-... [Pg.144]

Another option is the in situ reaction of the obtained enones in a 1,3-dipolar cycloaddition using nitrones or azomethineylides formed from the corresponding imines with DBU in the reaction mixture [153],... [Pg.412]

Dipolar cycloaddition reaction of suitable dipolarophiles to azomethine imines is a well-known method leading to the pyrazolo[l,2-tf]pyrazole ring system and the methodology was duly reviewed in CHEC-II(1996) <1996CHEC-II(8)747>. During the covered period, some new applications have appeared. [Pg.412]

Thermolysis of 6-substituted l,5-diazabicyclo[3.1.0]hexanes 326, easily available from 325, leads to a diaziridine ring opening and to the intermediate formation of labile azomethine imines 327. These compounds can be stabilized by a proton shift to form 1-substituted 2-pyrazolines 328. However, when the thermolysis is carried out in the presence of a 1,3-dipolarophile, the corresponding products of dipolar cycloaddition can be obtained. For example, iV-arylmaleimides provide mixtures of the major trans- and minor air-products 329 and 330, respectively (Scheme 47) C1999RJO110, 2001RJ0841, 2003RJ01338, 2004RJ067>. [Pg.414]

Pyrazolo[l,2- ][l,2,4]triazolo[3,4-f][l,2,4]benzotriazines 485-487, containing the title substmcture, can be prepared by application of a well-known strategy using 1,3-dipolar cycloaddition to suitable azomethine imines... [Pg.434]

H(65)1889, 2005EJO3553>. Starting dihydro[l,2,4]triazolo[3, 4-4]benzo[l,2,4]triazines 482 readily react with aromatic aldehydes to yield iminium salts 483. These salts treated with a base (e.g., triethylamine) are deprotonated to reactive 1,3-dipolar azomethine imines 484. In contrast to related five-membered heterocycles, these compounds are relatively unstable on storage in the solid form and particularly in solution. Fortunately, this obstacle can be easily circumvented by their in situ preparation and subsequent 1,3-dipolar cycloaddition. These compounds can participate in 1,3-dipolar cycloadditions with both symmetric and nonsymmetric dipolarophiles to give the expected 1,3-cycloadducts in stereoselective manner. Selected examples are given in Scheme 82. [Pg.436]

High levels of asymmetric induction (97-74% ee) along with high diastereoselectivity (>99 1-64 36) were reported for asymmetric 1,3-dipolar cycloaddition reactions of fused azomethine imines 315 and 3-acryloyl-2-oxazolidinone 709 leading to 711 using a chiral BINIM-Ni(n) complex 710 as a chiral Lewis acid catalyst (Equation 100) <20070L97>. [Pg.470]

A second category of silene reactions involves interactions with tt-bonded reagents which may include homonuclear species such as 1,3-dienes, alkynes, alkenes, and azo compounds as well as heteronuclear reagents such as carbonyl compounds, imines, and nitriles. Four modes of reaction have been observed nominal [2 + 2] cycloaddition (thermally forbidden on the basis of orbital symmetry considerations), [2 + 4] cycloadditions accompanied in some cases by the products of apparent ene reactions (both thermally allowed), and some cases of (allowed) 1,3-dipolar cycloadditions. [Pg.28]

Synthetic work commenced with evaluation of an azomethine ylide dipole for the proposed intramolecular dipolar cycloaddition. A number of methods exist for the preparation of azomethine ylides, including, inter alia, transformations based on fluoride-mediated desilylation of a-silyliminium species, electrocyclic ring opening of aziridines, and tautomerization of a-amino acid ester imines [37]. In particular, the fluoride-mediated desilylation of a-silyliminium species, first reported by Vedejs in 1979 [38], is among the most widely used methods for the generation of non-stabilized azomethine ylides (Scheme 1.6). [Pg.9]

The benzocinnolinium azomethine imines 76 (R = Ph, OEt) react readily with DEAZD by 1,3-dipolar cycloaddition to give the corresponding tetra-zolidine derivatives (Eq. 10).124 The masked azomethine imine 77 is particularly unreactive as a 1,3-dipole, although PTAD reacts cleanly where other dipolarophiles either failed to react or gave complex mixtures (Eq. 11).125... [Pg.21]

Similarly, Yli-Kauhaluoma and co-workers have studied the 1,3-dipolar cycloaddition of polymer-bound alkynes to azomethine imines, generated in situ from A-ami nopyridine iodides, in the synthesis of pyrazolopyridines <06JCC344>. [Pg.323]

From the 1,3-dipolar cycloaddition of nitrile oxides to azomethines (imines) 291... [Pg.244]

The use of a PEG-supported imine 326 allows the imine to be the supported component (Scheme 55). 1,3-Dipolar cycloaddition then proceeds smoothly to give the supported 4,5-dihydro-l,2,4-oxadiazoles 327, which were cleaved easily from the polymer with methoxide to give the 4,5-dihydro-l,2,4-oxadiazoles 328 <2003SL1064>. [Pg.293]

Some new spirothiadiazolepyrazolo[l, 4-e/][1,5] benzodiazepines have been reported by Rakilo et al. They are prepared by a regioselective 1,3-dipolar cycloaddition of a nitrile imine with pyrazolo[l,5,4-e/][ 1,5]benzodiazepine-thione <00H(53)571>. [Pg.362]

I.3.4.2. Intermolecular Cycloaddition at C=X or X=Y Bonds Cycloaddition reactions of nitrile oxides to double bonds containing heteroatoms are well documented. In particular, there are several reviews concerning problems both of general (289) and individual aspects. They cover reactions of nitrile oxides with cumulene structures (290), stereo- and regiocontrol of 1,3-dipolar cycloadditions of imines and nitrile oxides by metal ions (291), cycloaddition reactions of o-benzoquinones (292, 293) and aromatic seleno aldehydes as dipolarophiles in reactions with nitrile oxides (294). [Pg.45]

Poly(ethylene glycol) supported liquid-phase syntheses by both the reaction of (polyethylene glycol (PEG))-supported imines with nitrile oxides, generated in situ from aldoximes, (300) and 1,3-dipolar cycloadditions of nitrile oxide, generated in situ on soluble polymers with a variety of imines (301, 302) have been described. The solid-phase synthesis of 1,2,4-oxadiazolines via cycloaddition of nitrile oxide generated in situ on solid support with imines has also been elaborated (303). These syntheses of 1,2,4-oxadiazolines provide a library of 1,2,4-oxadiazolines in good yields and purity. [Pg.46]

Some features are characteristic of reactions of nitrile oxides with 2,4,6-cyclo-hep tatrien-l-imines (8-azaheptafulvenes). 1,3-Dipolar cycloaddition to the C=N double bond of N-aryl-2,4,6-cycloheptatrien-l-imines 142 (R = Ar), affording... [Pg.47]

N-benzyladamantyl-2-imines, and 2-methyleneadamantanes were studied (352, 353). In particular, X-ray single-crystal analysis confirmed the configuration of the oxathiazoline 185, resulting from the favored attack of nitrile oxide on the 5-fluoroadamantane-2-thione. 2-Silyl-substituted oxathiazole 186 was synthesized by the 1,3-dipolar cycloaddition reaction of phenyl triphenylsilyl thioketone with 4-chlorobenzonitrile oxide (354). [Pg.58]


See other pages where 1,3-dipolar cycloaddition imines is mentioned: [Pg.247]    [Pg.88]    [Pg.263]    [Pg.241]    [Pg.455]    [Pg.196]    [Pg.227]    [Pg.233]    [Pg.1150]    [Pg.255]    [Pg.303]    [Pg.382]    [Pg.423]    [Pg.115]    [Pg.426]    [Pg.103]    [Pg.219]    [Pg.210]    [Pg.222]    [Pg.428]    [Pg.252]    [Pg.46]   
See also in sourсe #XX -- [ Pg.1264 , Pg.1265 ]




SEARCH



1,3-Oxazolium 5-imines 1,3-dipolar cycloadditions

1,3-dipolar cycloaddition reactions with nitrile imines

1.3- Dipolar cycloaddition of azomethine imines

1.3- Dipolar cycloaddition of nitrile imines

1.3- Dipolar cycloaddition reactions azomethine imines

1.3- dipolar cycloaddition reactions with azomethine imines

Azomethine imines 1,3-dipolar cycloadditions

Azomethine imines, asymmetric 1,3-dipolar cycloaddition

Imine 2+2] cycloaddition

Imines cycloadditions

Imines in 1,3-dipolar cycloadditions

Nitrile imines, 1,3-dipolar cycloaddition

© 2024 chempedia.info