Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2,4-Dione, 3-substituted

Shi X, Liebeskind LS (2000) 3-cyclobutenyl-l,2-dione-substituted porphyrins. 2. A simple and general entry to quinone-porphyrin-porph3Tin-quinone tetrads and related molecules. J Org Chem 65 1665-1671... [Pg.431]

Thiazolidinedione -triazole hybrids maybe synthesized by the one-pot reaction based on a Knoevenagel condensation followed by an alkyne-azide cycloaddition, between thiazolidine-2,4-dione, substituted aryl aldehydes, propargyl bromide, and substituted aryl azides using piperidine. The catalytic system is composed of CuS04 5H20 and sodium ascorbate in PEG-400 [119]. [Pg.92]

Cydopentane reagents used in synthesis are usually derived from cyclopentanone (R.A. Ellison, 1973). Classically they are made by base-catalyzed intramolecular aldol or ester condensations (see also p. 55). An important example is 2-methylcydopentane-l,3-dione. It is synthesized by intramolecular acylation of diethyl propionylsucdnate dianion followed by saponification and decarboxylation. This cyclization only worked with potassium t-butoxide in boiling xylene (R. Bucourt, 1965). Faster routes to this diketone start with succinic acid or its anhydride. A Friedel-Crafts acylation with 2-acetoxy-2-butene in nitrobenzene or with pro-pionyl chloride in nitromethane leads to acylated adducts, which are deacylated in aqueous acids (V.J. Grenda, 1967 L.E. Schick, 1969). A new promising route to substituted cyclopent-2-enones makes use of intermediate 5-nitro-l,3-diones (D. Seebach, 1977). [Pg.81]

Several substituted cyclohexane derivatives may also be obtained by the reduction of a benzenoid precursor. Partial reduction of resorcinol, for example, and subsequent methyla-tion yields 2-methylcyclohexane-I,3-dione, which is frequently used in steroid synthesis (M.S. Newman, 1960 see also p. 71f.), From lithium-ammonia reduction of alkoxybenzenes l-alkoxy-l,4-cyclohexadienes are obtained (E.J. Corey, 1968 D). [Pg.87]

Ketenes. Derivatives of the compound ketene, CH2=C=0, are named by substitutive nomenclature. For example, C4Hc,CH=C=0 is butyl ketene. An acyl derivative, such as CH3CH2—CO—CH2CH=C=0, may be named as a polyketone, l-hexene-l,4-dione. Bisketene is used for two to avoid ambiguity with diketene (dimeric ketene). [Pg.32]

A substantial effort has been appHed to iacreaskig i by stmctural modification (114), eg, the phthalaziQe-l,4-diones (33) and (34) which have chemiluminescence quantum yields substantially higher than luminol (115,116). The fluorescence quantum yield of the dicarboxylate product from (34) is 14%, and the yield of singlet excited state is calculated to be 50% (116). Substitution of the 3-amino group of lumiaol reduces the CL efficiency > 10 — fold, whereas the opposite effect occurs with the 4-amino isomer (117). A series of pyridopyridaziae derivatives (35) have been synthesized and shown to be more efficient than luminol (118). [Pg.268]

The nitrogen substitution chemistry of 2,3-dichloro-l,4-naphthoquiaone (30) has been widely employed (101). Although the product mixtures are sometimes complex, many examples illustrate the excellent results possible ia specific iastances eg, 3-nitro-12JT-ben2o[b]phenoxa2iae-6,ll-dione... [Pg.416]

When large groups, such as phenyl, bromo, ethoxycarbonyl or nitro are attached at position 3, the principal products are l-alkylcinnolin-4(l/f)-ones. Cyanoethylation and acetylation of cinnolin-4(l/f)-one takes place exclusively at N-1. Phthalazin-l(2/f)-ones give 2-substituted derivatives on alkylation and acylation. Alkylation of 4-hydroxyphthala2in-l(2/f)-one with an equimolar amount of primary halide in the presence of a base leads to 2-alkyl-4-hydroxyphthalazin-l(2/f)-one and further alkylation results in the formation of 4-alkoxy-2-alkylphthalazinone. Methylation of 4-hydroxy-2-methyl-phthalazinone with dimethyl sulfate in aqueous alkali gives a mixture of 4-methoxy-2-methylphthalazin-l(2/f)-one and 2,3-dimethylphthalazine-l,4(2//,3//)-dione, whereas methylation of 4-methoxyphthalazin-l(2/f)-one under similar conditions affords only 4-methoxy-2-methylphthalazinone. [Pg.17]

There are two main classes here. Firstly, 5-substituted 4(6)-aminopyrimidines, e.g. the 5-ester (227), are reacted with esters in the presence of sodium (63CB1868), or with acetals in the presence of alkoxide (78KGS1549), to give pyrido[2,3-Keto esters give 6-ketones (229) (80USP4215216), whilst use of aminopyrimidine nitriles gives 7-oxo-5-amino derivatives (81USP4245094). [Pg.227]

In contrast to electrophilic reagents, the highly -tt-deficient character of the pteridine nucleus is responsible for its vulnerability towards nucleophilic attack by a wide variety of reagents. The direct nucleophilic substitution of pteridine itself in a Chichibabin-type reaction with sodamide in diethylaniline, however, was unsuccessful (51JCS474). Pteridin-6-one, on the other hand, yielded pteridine-6,7-dione under the same conditions, via a still unknown reaction mechanism. [Pg.286]

Another approach uses the reaction of 6-chloro-5-nitropyrimidines with a-phenyl-substituted amidines followed by base-catalyzed cyclization to pteridine 5-oxides, which can be reduced further by sodium dithionite to the heteroaromatic analogues (equation 97) (79JOC1700). Acylation of 6-amino-5-nitropyrimidines with cyanoacetyl chloride yields 6-(2-cyanoacetamino)-5-nitropyrimidines (276), which can be cyclized by base to 5-hydroxypteridine-6,7-diones (27S) or 6-cyano-7-oxo-7,8-dihydropteridine 5-oxides (277), precursors of pteridine-6,7-diones (278 equation 98) (75CC819). [Pg.316]

Because of the structural requirements of the bielectrophile, fully aromatized heterocycles are usually not readily available by this procedure. The dithiocarbamate (159) reacted with oxalyl chloride to give the substituted thiazolidine-4,5-dione (160) (see Chapter 4.19), and the same reagent reacted with iV-alkylbenzamidine (161) at 100-140 °C to give the 1 -alkyl-2-phenylimidazole-4,5-dione (162) (see Chapter 4.08). Iminochlorides of oxalic acid also react with iV,iV-disubstituted thioureas in this case the 2-dialkylaminothiazolidine-2,4-dione bis-imides are obtained. Thiobenzamide generally forms linear adducts, but 2-thiazolines will form under suitable conditions (70TL3781). Phenyliminooxalic acid dichloride, prepared from oxalic acid, phosphorus pentachloride and aniline in benzene, likewise yielded thiazolidine derivatives on reaction with thioureas (71KGS471). [Pg.129]

A Hammett relationship of the form ApK = 5.8am has been proposed for 4-substituted pyrazoles (74TL1609) in order to explain the effect of 4-nitro ApK = 4.5, am = 0.71) and 4-diazo groups (Apiifa = 10.0, am = 1.76). The acidity constants of a series of pyrazolidine-3,5-diones have been determined (75AJC1583) and the 4- -butyl-1,2-diphenyl derivative phenylbutazone has a pK of 4.33. [Pg.225]

H-Dibenz[6,/]azepine-5-carboxamide pharmacological properties, 7, 546 Dibenz[6,e]azepine-6,11-dione, 10-amino-reactions, 7, 526 Dibenz[6,e]azepinediones intramolecular nucleophilic substitution, 7, 516 synthesis, 7, 531 Dibenz[6,e]azepine-5,11-diones epoxides, 7, 515 reduction, 7, 525... [Pg.599]

Imidazole-4,5-dicarboxylic acids, coupling, 5, 403 decarboxylation, 5, 434 1-substituted synthesis, 5, 468 synthesis, 5, 362, 402, 484 Imidazole-4,5-dione, l-alkyl-2-phenyl-synthesis, 5, 129, 479 Imidazole-2,4-diones tautomerism, 5, 370 Imidazole-4,5-diones tautomerism, 5, 370 Imidazole-2,4-dithione, 5,5-diphenyl-tautomerism, 5, 370 Imidazole-2,4-dithiones tautomerism, 5, 370 Imidazolepropanol synthesis, 5, 486 Imidazoles accelerators epoxy resins, 1, 407... [Pg.655]

Pyrazolo[3,4-c]pyrazole, tetrahydro-rearrangement, 5, 250 Pyrazolo[4,3-c]pyrazole, tetraaryl-electrophilic substitution, 6, 1035 oxidation, 6, 1034-1035 reduction, 6, 1035 vacuum pyrolysis, 6, 1035 Pyrazolo[ 1,2-n]pyrazole-1,5-diones synthesis, 6, 991 Pyrazolo[ 1,2-n]pyrazoles reactions, 6, 1038 ring opening, 6, 983... [Pg.778]

Pyrido[3,4-d]pyrimidine-2,4-dione synthesis, 3, 215 Pyridopyrimidines, 3, 201 iV-alkylations, 3, 206 biological activity, 3, 260-261 1-electron reductions, 3, 207 IR spectra, 3, 204 mass spectra, 3, 204 MO calculations, 3, 204 NMR, 3, 202, 203 nucleophilic substitution, 3, 213 8-nucleosides synthesis, 3, 206 physical properties, 3, 201-205 protonation, 3, 206 radical reactions, 3, 215 reactions with water, 3, 207 reduced... [Pg.800]


See other pages where 2,4-Dione, 3-substituted is mentioned: [Pg.327]    [Pg.334]    [Pg.1290]    [Pg.6]    [Pg.6]    [Pg.124]    [Pg.311]    [Pg.97]    [Pg.537]    [Pg.274]    [Pg.339]    [Pg.273]    [Pg.311]    [Pg.434]    [Pg.456]    [Pg.458]    [Pg.15]    [Pg.26]    [Pg.72]    [Pg.109]    [Pg.113]    [Pg.119]    [Pg.189]    [Pg.271]    [Pg.292]    [Pg.296]    [Pg.299]    [Pg.310]    [Pg.673]    [Pg.799]    [Pg.815]   


SEARCH



2.4- Dione, 3-substituted Knoevenagel reaction

2.4- Dione, 3-substituted synthesis

Substituted 2,7-naphthyridine-3,6-diones

© 2024 chempedia.info