Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2.4- Dinitrochlorobenzene reactions

From the standpoint of geometrical considerations, the major difference is in the far greater steric requirements of the nitro group. This could result in either primary or secondary steric effects. Nevertheless, primary steric effects do not seem to be necessarily distinguishable by direct kinetic comparison. A classic example is the puzzling similarity of the activation parameters of 2-chloropyrimidine and 2,6-dinitrochlorobenzene (reaction with piperidine in ethanol), which has been described by Chapman and Rees as fortuitous. However, that nitro groups do cause (retarding) primary steric effects has been neatly shown at peri positions in the reaction with alkoxides (see Section IV,C, l,c). [Pg.321]

Preparation of 2 4-dinitrophenyl-sulphides. Dissolve about 0-5 g. (or 0 005 mol) of the mercaptan in 10-15 ml, of rectified spirit (or in the minimum volume necessary for solution warming is permissible) and add 2 ml. of 10 per cent, sodium hydroxide solution. Mix the resulting sodium mercaptide solution with a solution of 1 g. of 2 4-dinitrochlorobenzene in 5 ml. of rectified spirit. Reaction may occur immediately with precipitation of the thioether. In any case reflux the mixture for 10 minutes on a water bath in order to ensure the completeness of the reaction. Filter the hot solution rapidly allow the solution to cool when the sulphide will crystaUise out. RecrystaUise from alcohol. [Pg.500]

Dissolve 1 g. (or 0 01 mol) of the phenol in a solution of 0-40 g. of sodium hydroxide in 5 ml. of water. Add the resulting solution to 2-Og. of 2 4-dinitrochlorobenzene dissolved in 30 ml. of 95 per cent, ethanol add more alcohol, if necessary, to effect solution. Heat the solution under reflux on a water bath until the colour (usually red) is discharged and a copious precipitate of sodium chloride appears (30-60 minutes). Dilute the reaction mixture with an equal volume of water, filter off the precipitated 2 4-dinitrophenyl ether, wash with water, and recrystallise from alcohol. [Pg.684]

Dinitroiodobenzene has been prepared by the nitration of 0- or /)-nitroiodobenzene, by treatment of 2,4-dinitrobenzenedi-azonium sulfate with potassium iodide, and by the reaction of sodium iodide with 2,4-dinitrochlorobenzene in refluxing ethylene glycol. The present procedure is a modification of the last-mentioned one. [Pg.36]

The Zincke reaction is an overall amine exchange process that converts N- 2,A-dinitrophenyl)pyridinium salts (e.g, 1), known as Zincke salts, to iV-aryl or iV-alkyl pyridiniums 2 upon treatment with the appropriate aniline or alkyl amine. The Zincke salts are produced by reaction of pyridine or its derivatives with 2,4-dinitrochlorobenzene. This venerable reaction, first reported in 1904 and independently explored by Konig, proceeds via nucleophilic addition, ring opening, amine exchange, and electrocyclic reclosure, a sequence that also requires a series of proton transfers. By... [Pg.355]

In 1904, Zincke reported that treatment of Al-(2,4-dinitrophenyl)pyridinium chloride (1) with aniline provided a deep red salt that subsequently transformed into A-phenyl pyridinium chloride 5 (Scheme 8.4.2). Because the starting salt 1 was readily available from the nucleophilic aromatic substitution reaction of pyridine with 2,4-dinitrochlorobenzene, the Zincke reaction provided access to a pyridinium salt (5) that would otherwise require the unlikely substitution reaction between pyridine and... [Pg.355]

Later in the 20th century, Vompe and Stepanov delineated efficient procedures for the preparation of the so-called Zincke salts (e.g., 1) from pyridines and 2,4-dinitrochlorobenzene, involving, for example, reflux in acetone. Vompe and Lukes also noted that electron-donating substituents on the pyridinium ring of the Zincke salt retarded reaction with amines at the 2-position of the pyridinium ring, sometimes leading instead to attack at the C-1 position of the 2,4-dinitrobenzene ring, with displacement of the pyridine. [Pg.356]

With a chiral phenylglycinol nucleophile (Scheme 8.4.17), use of the chloride Zincke salt 6 (cf. Scheme 8.4.16) gave decomposition of the salt back to isoquinoline and 2,4-dinitrochlorobenzene. The desired reaction was enabled by exchanging chloride for the weakly nucleophilic dodecyl sulfate anion. The resulting salt 49 also had improved... [Pg.362]

The 2,7-naphthyridine system 53 (Scheme 8.4.18) was combined with 2,4-dinitrochlorobenzene and 2-amino glycerol for in situ reaction of the resulting Zincke salt. The resulting naphthyridinium 54 was trapped by Bradsher cycloaddition with (Z)-vinyl ether 55, providing tetracycle 56 (X-ray) upon internal addition of one of the diastereotopic hydroxymethyl groups to the resulting iminium. This approach was also extended to the use of chiral 2,7-naphthyridinium salts, prepared via the analogous Zincke process. ... [Pg.363]

The Zincke reaction has also been adapted for the solid phase. Dupas et al. prepared NADH-model precursors 58, immobilized on silica, by reaction of bound amino functions 57 with Zincke salt 8 (Scheme 8.4.19) for subsequent reduction to the 1,4-dihydropyridines with sodium dithionite. Earlier, Ise and co-workers utilized the Zincke reaction to prepare catalytic polyelectrolytes, starting from poly(4-vinylpyridine). Formation of Zincke salts at pyridine positions within the polymer was achieved by reaction with 2,4-dinitrochlorobenzene, and these sites were then functionalized with various amines. The resulting polymers showed catalytic activity in ester hydrolysis. ... [Pg.363]

Marazano and co-workers have used the Zincke reaction extensively to prepare chiral templates for elaboration to substituted piperidine and tetrahydropyridine natural products and medicinal agents. For example, 3-picoline was converted to Zincke salt 40 by reaction with 2,4-dinitrochlorobenzene in refluxing acetone, and treatment with R- -)-phenylglycinol in refluxing n-butanol generated the chiral pyridinium 77. Reduction to... [Pg.366]

The halogens of halothiophenes are more labile than those of the corresponding benzenes in accordance with theoretical considera-tions which indicate that thiophenes should also undergo nucleophilic substitutions more rapidly than benzenes. Hurd and Kreuz" found that in qualitative experiments 3,5-dinitro-2-chlorothiophene was more reactive toward piperidine and methanolic potassium hydroxide than 2,4-dinitrochlorobenzene. A quantitative study on the reaction of the six isomeric bromonitrothiophenes with piperidine (Table V) shows that the thiophenes react about one thousand times... [Pg.69]

Tetrahydrocarboline derivatives have recently been synthesized from 2-o-nitroarylated cyclohexanone derivatives. Thus, reductive cyclization of 3-(2,4-dinitrophenyl)-l-methyl-4-piperidone (68) (prepared by the reaction of 2,4-dinitrochlorobenzene with l-methyl-4-A-pyrrolidmo-3-piperideine) gave 7-amino-2-methyl-l,2,3,4-tetrahydro-y-carboline (69). Neither catalytic nor chemical reduction of the... [Pg.99]

Like the chloronitrobenzenes, a chloroquinoline reacts faster with sodium p-tolylsulfide when the chloro group is para to the aza-group than when it is orthoy the factor involved being about 10. However, a strikingly different behavior is noted in the much lower BS-/ BO- ratio which is 2.5 for 4-chloroquinoline ( para isomer) and 0.24 for 2-chloroquinoline ( ortho isomer). For p-chloronitro-benzene this ratio is 38, and for 2,4-dinitrochlorobenzene it is 1950. Thus far there is no case in which the reaction of a chloronitrobenzene derivative with sodium methoxide is faster than that with sodium phenylsulfide. [Pg.313]

Salt effects on the reaction of 2,4-dinitrochlorobenzene with amines or alkoxides have been investigated.Reinheimer et al. have studied decelerative ion pairing of alkali metal methoxides in reaction with this substrate cations and anions in added salts have specific effects on ion pairing. [Pg.164]

The catalytic effect of aromatic nitro groups in the substrate and product or in an added inert nitro compoimd (e.g., w-dinitrobenzene in 18) has been observed in the reaction of 2,4-dinitrochlorobenzene with an amine in chloroform. Hydrogen bonding to benzil or to dimethyl sulfone and sulfoxide also provided catalysis. It is clear that the type of catalysis of proton transfer shown in structure 18 will be more effective when hydrogen bonding is to an azine-nitrogen. [Pg.166]

OOMIl, 01 Mil). Similar reactions of 1,2-dihydroxybenzene derivatives 237 with various less activated 2,6-dinitrochlorobenzene derivatives provided usually low yields of the corresponding dioxins (59JCS1899, 84JHC1073). To improve the yields, especially with less activated chloronitro compounds, a two-step... [Pg.215]

The number of reactions that fit into this second class are manifold. Some typical examples are the amine-catalyzed reactions of 2,4-dinitrochlorobenzene with n-butylamine in chloroform (k"/k = 2.59 l.mole-1)23, with allylamine in chloroform (k"jk — 4.60 l.mole-1)24 and with allylamine in ethanol (k"fk =0.36 l.mole-1)25 and the amine-catalyzed reaction of p-nitrofluorobenzene with piperidine in polar solvents (k"/k < 3.2 l.mole-1)26. A typical example of a strongly catalyzed system is the reaction of 2,4-dinitrophenyl phenyl ether with piperidine in 60 % dioxan-40 % water27. [Pg.410]

Similar solvent effects are observed in the reaction of 2,4-dinitrochlorobenzene and n-butylamine at 24.8 °C6. These results are summarized in Table 3. The reac-... [Pg.423]

This possibility warrants more detailed consideration. For the reaction of 2,4-dinitrochlorobenzene with an amine it is highly probable that the rate-determining step is intermediate formation. One possible mode of base catalysis in this system would involve transfer of the proton in the step in which the intermediate is formed. [Pg.425]

The method is quite useful for particularly active alkyl halides such as allylic, benzylic, and propargylic halides, and for a-halo ethers and esters, but is not very serviceable for ordinary primary and secondary halides. Tertiary halides do not give the reaction at all since, with respect to the halide, this is nucleophilic substitution and elimination predominates. The reaction can also be applied to activated aryl halides (such as 2,4-dinitrochlorobenzene see Chapter 13), to epoxides, " and to activated alkenes such as acrylonitrile. The latter is a Michael type reaction (p. 976) with respect to the alkene. [Pg.787]

Entry 5 involves metallic copper as a catalyst and is probably a metal-catalyzed reaction (see Section 11.3). The reaction is carried out with excess phenol without solvent. Entries 6 and 7 are cases of C-arylation, both using 2,4-dinitrochlorobenzene. [Pg.1039]

Following a patented procedure for the conversion of 2,4-dinitrochlorobenzene to 5-chloro-2-nitrophenol, 2,4-difluoronitrobenzene was treated with sodium hydroxide in hot aqueous dioxane containing a phase transfer catalyst. On the small scale, the reaction and isolation of 5-fluoro-2-nitrophenol, including vacuum distillation, were uneventful. On the 20 1 scale, vacuum distillation of combined batches of the crude product led to onset of decomposition at 150°C, which could not be controlled, and the residue erupted with explosive violence and a small fire ensued. Thermal examination of fresh small-scale crude material has shown that it is capable of highly exothermic decomposition, with onset of the exotherm at 150°C (ARC). It was then realised that difficulty in controlling the reaction temperature had been experienced on the 20 1 scale. It is recommended that this procedure and purification should not be attempted on so large a scale. [Pg.705]


See other pages where 2.4- Dinitrochlorobenzene reactions is mentioned: [Pg.493]    [Pg.113]    [Pg.56]    [Pg.493]    [Pg.113]    [Pg.56]    [Pg.67]    [Pg.67]    [Pg.39]    [Pg.163]    [Pg.268]    [Pg.251]    [Pg.197]    [Pg.213]    [Pg.422]    [Pg.422]    [Pg.422]    [Pg.423]    [Pg.424]   
See also in sourсe #XX -- [ Pg.735 , Pg.793 , Pg.799 , Pg.823 , Pg.827 ]

See also in sourсe #XX -- [ Pg.735 , Pg.793 , Pg.799 , Pg.823 , Pg.827 ]




SEARCH



2,4-Dinitrochlorobenzene, reaction with

2.4- Dinitrochlorobenzene, reaction with 2- aminopyridine

© 2024 chempedia.info