Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dimethyl sulfoxide solvent structure

Some results of the modification of lignin sulfonate Ultra B002 by reaction with terephthaloyl chloride are summarized in Table VI. The total hydroxyl content of the lignosulfonates as well as their derivatives are presented in Table VII. The hydrolytic resistance of selected products is evaluated in Table VIII. The results presented in Tables VI-VIII stress several advantages of the derivatives with terephthaloyl chloride. The modified lignin sulfonates were insoluble, or only very slightly soluble, in organic solvents. They were, however, soluble in dimethyl sulfoxide. Ordered structures were identified by X-ray studies (16,17). [Pg.261]

Bhattacharjya S and Balaram P. Effects of Organic Solvents on Protein Structures Observations of a Structured Helical Core in Hen Egg-white Lysozyme in Dimethyl Sulfoxide. Proteins Structure, Function and Genetics 1997 29 492-507. [Pg.390]

Dimethyl sulfoxide has the structure (CH3)2 —0 and is commonly referred to as DMSO It IS a relatively inexpensive solvent ob tamed as a byproduct in paper manufacture... [Pg.212]

Harrowfield et al. [37-39] have described the structures of several dimethyl sulfoxide adducts of homo bimetallic complexes of rare earth metal cations with p-/e rt-butyl calix[8]arene and i /i-ferrocene derivatives of bridged calix[4]arenes. Ludwing et al. [40] described the solvent extraction behavior of three calixarene-type cyclophanes toward trivalent lanthanides La (Ln = La, Nd, Eu, Er, and Yb). By using p-tert-huty ca-lix[6Jarene hexacarboxylic acid, the lanthanides were extracted from the aqueous phase at pH 2-3.5. The ex-tractability is Nb, Eu > La > Er > Yb. [Pg.342]

Water plays a crucial role in the inclusion process. Although cyclodextrin does form inclusion complexes in such nonaqueous solvents as dimethyl sulfoxide, the binding is very weak compared with that in water 13 Recently, it has been shown that the thermodynamic stabilities of some inclusion complexes in aqueous solutions decrease markedly with the addition of dimethyl sulfoxide to the solutions 14,15>. Kinetic parameters determined for inclusion reactions also revealed that the rate-determining step of the reactions is the breakdown of the water structure around a substrate molecule and/or within the cyclodextrin cavity 16,17). [Pg.63]

Phenol, the simplest and industrially more important phenolic compound, is a multifunctional monomer when considered as a substrate for oxidative polymerizations, and hence conventional polymerization catalysts afford insoluble macromolecular products with non-controlled structure. Phenol was subjected to oxidative polymerization using HRP or soybean peroxidase (SBP) as catalyst in an aqueous-dioxane mixture, yielding a polymer consisting of phenylene and oxyphenylene units (Scheme 19). The polymer showed low solubility it was partly soluble in DMF and dimethyl sulfoxide (DMSO) and insoluble in other common organic solvents. [Pg.229]

The sulfonylated and acylated PPO presents solubility characteristics which are completely different from those of the parent PPO. Table V presents the solubility of some modified structures compared to those of unmodified PPO. It is very important to note that, after sulfonylation, most of the polymers become soluble in dipolar aprotic solvents like dimethyl sulfoxide (DMSO), N,N— dimethylformamide (DMF) and N,N-dimethylacetamide (DMAC). At the same time it is interesting to mention that, while PPO crystallizes from methylene chloride solution, all the sulfonylated polymers do not crystallize and form indefinitely stable solutions in methylene chloride. Only some of the acetylated polymers become soluble in DMF and DMAC, and none are soluble in DMSO. The polymers acetylated with aliphatic acid chlorides such as propionyl chloride are also soluble in acetone. [Pg.56]

See structure 1. The reaction is conducted in dimethyl sulfoxide (DMSO), because DMSO is a very good solvent for the growing oligomers and its strong interaction with water prevents hydrolysis of the zirconium(IV) and favors the forward Schiff-base condensation reaction. [Pg.464]

In recent years, a great diversity of structurally well-defined functionalized fullerenes has been designed and synthesized for that purpose. Some of them exhibit pronounced solubility in water (vide infra). But even for compounds being virtually insoluble in water, stable aqueous phases can be obtained in plenty of cases by diluting stock solutions of the compounds in polar organic solvents with various amounts of water. Notably, dimethyl sulfoxide (DMSO) and tetrahydro-furan (THF) have turned out to be excellent surfactants for preparing stable aqueous fullerene solutions (Angelini et al., 2005 Cassell et al., 1999 Da Ros et al., 1996 Gun kin et al., 2006 Illescas et al., 2003). Also cosolvents such as dimethylforma-mide (DMF) and methanol can be used to promote water solubility. After subsequent dilution of a saturated solution of C60 in benzene with THF, acetone and finally water, actually stable aqueous suspensions of pristine fullerene can be obtained (Scrivens et al., 1994). [Pg.53]

Bell, 1989 Rhee and Bell, 1991), random copolymers of methyl acrylate and acrylonitrile were directly polymerized onto the carbon fiber surface. Dimethyl formamide, dimethyl sulfoxide and distilled water proved to be useful as solvents for this process. Polymerization can take place on the carbon fiber electrode, with initial wetting of the fiber surface leading to better adhesion of the polymer formed. The structure and properties of the polymer can be varied by employing different vinyl and cyclic monomers in homopolymerization. Chemical bond can also be formed, such as polymer grafting to the carbon fiber surface. [Pg.295]

As in the case of cytosine, several NMR and NQR studies were performed in search of the predominating tautomeric structures of uracil and thymine and their nucleotides and nucleosides. Investigation of PMR spectra of these compounds in nonaqueous solvents, such as dimethyl sulfoxide, localized the mobile protons in a number of 5- and 6-substituted uracils.59,61,328 These and similar studies63,85,329,330 indicated that dilactam structure 32 predominates in uracil compounds in aqueous and nonaqueous solutions as well as in the solid state. Proton and N-15 magnetic resonance spectra of several pyrimidines85 confirmed the diketo structure usually ascribed to uracil. [Pg.260]

Fifolt [ 130] reported this chemical shift additivity method for fluorobenzenes in two deuterated solvents d6 acetone and d6 dimethyl sulfoxide (DMSO) Close correlations between experimental and calculated fluorine chemical shifts were seen for 50 compounds Data presented in Table 18 result from measurements in deuterochloroform as (he solvent [56] Fluorine chemical shifts calculated by this additivity method can be used to predict approximate values for any substituted benzene with one or more fluorines and any combination of the substituents, to differentiate structural isomers of multisubstituted fluorobenzenes [fluoromtrotoluenes (6, 7, and 8) in example 1, Table 19], and to assign chemical shifts of multiple fluorines in the same compound [2,5 difluoroamline (9) in example 2, Table 19] Calculated chemical shifts can be in error by more than 5 ppm (upfield) in some highly fluonnated systems, especially when one fluonne is ortho to two other fluorines Still, the calculated values can be informative even in these cases [2,3,4,6-tetrafluorobromobenzene (10) in example 3, Table 19]... [Pg.1063]

It is still not clear why the furanose content is generally higher in organic solvents than in water. The effect on solvation of the water structure [p. 24] has been proposed as an explanation it seems to explain the interesting fact3 that addition of even a small proportion (< 10%) of dimethyl sulfoxide to an... [Pg.31]


See other pages where Dimethyl sulfoxide solvent structure is mentioned: [Pg.363]    [Pg.1063]    [Pg.44]    [Pg.46]    [Pg.395]    [Pg.278]    [Pg.3]    [Pg.21]    [Pg.107]    [Pg.371]    [Pg.213]    [Pg.270]    [Pg.338]    [Pg.102]    [Pg.195]    [Pg.178]    [Pg.478]    [Pg.15]    [Pg.502]    [Pg.263]    [Pg.3]    [Pg.19]    [Pg.155]    [Pg.633]    [Pg.12]    [Pg.358]    [Pg.291]    [Pg.469]    [Pg.577]    [Pg.196]    [Pg.929]    [Pg.32]    [Pg.19]    [Pg.6]    [Pg.217]   
See also in sourсe #XX -- [ Pg.304 ]




SEARCH



Dimethyl solvents

Dimethyl structure

Dimethyl sulfoxide solvent

Solvent structure

Sulfoxides dimethyl

Sulfoxides dimethyl sulfoxide

Sulfoxides solvent

© 2024 chempedia.info