Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2- thiophene, reaction with

Aldehyde (46) has also been converted into diazole-fused thiophenes. Reaction with hydrazine derivatives gave hydrazones (50), which on treatment with acid were converted to diazoles (51). Unfortunately, the nitrogen substituent was sometimes scrambled, leading to mixtures of (51) and (52). The final sulfur oxidation was uniformly high yielding [28,29] (Scheme 6.13, Table 6.3). [Pg.238]

Scheme 145 Thiophene reaction with the radicals generated by photo-induced Se-C bond cleavage [209]... Scheme 145 Thiophene reaction with the radicals generated by photo-induced Se-C bond cleavage [209]...
Potential Processes. Sulfur vapor reacts with other hydrocarbon gases, such as acetjiene [74-86-2] (94) or ethylene [74-85-1] (95), to form carbon disulfide. Higher hydrocarbons can produce mercaptan, sulfide, and thiophene intermediates along with carbon disulfide, and the quantity of intermediates increases if insufficient sulfur is added (96). Light gas oil was reported to be successflil on a semiworks scale (97). In the reaction with hydrocarbons or carbon, pyrites can be the sulfur source. With methane and iron pyrite the reaction products are carbon disulfide, hydrogen sulfide, and iron or iron sulfide. Pyrite can be reduced with carbon monoxide to produce carbon disulfide. [Pg.30]

In view of the overall increased reactivity of furan compared with thiophene it would be anticipated that furan would be less regioselective in its reactions with electrophiles than thiophene. Possible reasons for the high regioselectivity of furan in electrophilic substitution reactions include complex formation between substrates and reagents and the ability of heteroatoms to assist in the stabilization of cationic intermediates (80CHE1195). [Pg.44]

Thiophene is also readily acylated under both Friedel-Crafts and Vilsmeier-Haack conditions and similarly to pyrrole and furan gives 2-acylated products. An almost quantitative conversion of thiophene into its 2-benzoyl derivative is obtained by reaction with 2-benzoyloxypyridine and trifluoroacetic acid. The attempted preparation of 2-benzoylthiophene under standard Friedel-Crafts conditions, however, failed (80S139). [Pg.52]

Furan undergoes phenylation rather than diazo coupling on reaction with ben-zenediazonium salts, and thiophene similarly yields 2- or 2,5-diaryl derivatives rather than coupled products. However, 2,5-dimethylfuran and 2-/-butylfuran give coupled products with 2,4-dinitrobenzenediazonium ion (Scheme 26). [Pg.56]

Methylthiophene is metallated in the 5-position whereas 3-methoxy-, 3-methylthio-, 3-carboxy- and 3-bromo-thiophenes are metallated in the 2-position (80TL5051). Lithiation of tricarbonyl(i7 -N-protected indole)chromium complexes occurs initially at C-2. If this position is trimethylsilylated, subsequent lithiation is at C-7 with minor amounts at C-4 (81CC1260). Tricarbonyl(Tj -l-triisopropylsilylindole)chromium(0) is selectively lithiated at C-4 by n-butyllithium-TMEDA. This offers an attractive intermediate for the preparation of 4-substituted indoles by reaction with electrophiles and deprotection by irradiation (82CC467). [Pg.60]

Furan and thiophene undergo addition reactions with carbenes. Thus cyclopropane derivatives are obtained from these heterocycles on copper(I) bromide-catalyzed reaction with diazomethane and light-promoted reaction with diazoacetic acid ester (Scheme 41). The copper-catalyzed reaction of pyrrole with diazoacetic acid ester, however, gives a 2-substituted product (Scheme 42). [Pg.62]

Thiophene fails to undergo cycloaddition reactions with common dienophiles under normal conditions. However, when thiophene is heated under pressure with maleic anhydride, the exo adduct (136) is formed in moderate yield (78JOC1471). [Pg.66]

Aminothiophenes and 3-aminobenzo[Z)]thiophene undergo thermal [2 + 2] cycloaddi-tion reactions with activated alkynes. The reactions are solvent dependent thus in non-polar solvents at -30 °C, 3-pyrrolidinothiophene adds to DMAD to give a [2 + 2] cycloadduct which is ultimately converted into a phthalic ester. In methanol, however, a tricyclic product is formed (Scheme 54) (81JOC424. ... [Pg.68]

Benzo[Z)]thiophene reacts with dimethyl l,2,4,5-tetrazine-3,6-dicarboxylate in a cyclo-addition-fragmentation reaction to yield (143), whereas benzo[A]furan and N- methylindole yield products (144) arising from ring opening and recyclization (76AP679). [Pg.69]

Pyrrolethiols, readily obtained from the corresponding thiocyanates by reduction or treatment with alkali, rapidly oxidize to the corresponding disulfides. They are converted into thioethers by reaction with alkyl halides in the presence of base. Both furan- and thiophene-thiols exist predominantly as such rather than in tautomeric thione forms. [Pg.78]

Ring closures which depend on the conversion of the heteroatom into an electrophile are mostly associated with the formation of thiophene, selenophene and tellurophene rings and some illustrative examples are shown in Scheme 17. The last example which concerns the conversion of reaction with isocyanides is of particular interest since it appears to entail the attack of an electrophilic nitrogen species on the aryl ring. [Pg.99]

Addition reactions with tetracyanoethane have provided access to 2,5-diamino-3,4-dicyano-thiophene and -selenophene (58JA2775,81ZOR1958). Base catalyzed rearrangement gives the isomeric pyrrolethiol (Scheme 53). [Pg.119]

Among the less widely exploited interconversion processes are those involving thermal reactions with ethyl azidoformate, which convert furan into A-ethoxycarbonyl-A -pyrrolin-2-one, and thiophenes into A-ethoxycarbonylpyrroles (Scheme 96a) (64TL2185). The boron trifluoride catalyzed reaction of l,3-diphenylbenzo[c]furan with A-sulfinylaniline results in the replacement of the oxygen by an iV-phenyl group (Scheme 96b) 63JOC2464). [Pg.142]


See other pages where 2- thiophene, reaction with is mentioned: [Pg.171]    [Pg.82]    [Pg.466]    [Pg.1]    [Pg.29]    [Pg.61]    [Pg.75]    [Pg.79]    [Pg.81]    [Pg.116]    [Pg.122]    [Pg.142]   


SEARCH



Thiophene reaction

© 2024 chempedia.info