Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.3- Diketones acidity

PurpurogaHin (5), a red-brown to black mordant dye, forms from electrolytic and other mild oxidations of pyrogaHol (1). The reaction is beHeved to proceed through 3-hydroxy-(9-benzoquinone (2) and 3-hydroxy-6-(3,4,5-trihydroxyphenyl)-(9-benzoquinone (3). The last, in the form of its tautomeric triketonic stmcture, represents the vinylogue of a P-diketone. Acid hydrolysis leads to the formation of (4), foHowed by cyclization and loss of formic acid... [Pg.375]

It is well established that stress affects the ascorbic acid concentration in various components of the body. What mechanism causes stress is unimportant because similar effects are obtained with prolonged exposure to cold, heat, or X-irradiation, excessive oxygen tension, or even a simple injection of saline. Stress increases the excretion of ascorbic acid in the urine and the plasma levels of ascorbic acid in the blood (in the early stages of stress), and reduces the ascorbic acid level of the adrenal. Increased urinary excretion of dehydroascorbic and diketonic acids usually is associated with ascorbic acid in the urine. [Pg.282]

When camphor (I) is heated with selenium dioxide in acetic acid, the methylene group next to the carbonyl group is oxidised also to a carbonyl group, to form camphorquinone (II). Note that the compound (II) is not a true quinone but a 1,2-diketone ... [Pg.147]

This reaction applies to many i,2 diketones, and is termed the Benzilic Acid Rearrangement. It provides a ready method for the preparation of disubstituted a4iydroxy-carboxylic acids. When applied to a cyclic 1,2-diketone, the ring system is necessarily reduced by one carbon atom for example, cyclohexan-i,2 ... [Pg.235]

This synthesis of the pyrrole ring system, due to Knorr, consists in the condensation of an a-aminoketone with a 1,3-diketone or the ester of a p-keto-acid, a-Aminoketones are unstable in the free state, readily undergoing self-condensation consequently they must be prepared, by the reduction of an a-nitroso (or oximino) ketone, in the presence of the 1,3-diketone or p-ketoester, to ensure rapid interaction. [Pg.293]

This reaction consists of the condensation of two molecular equivalents of a 1,3 diketone (or a J3-keto-ester) with one equivalent of an aldehyde and one of ammonia. Thus the interaction of ethyl acetoacetate and acetaldehyde and ammonia affords the 1,4-dihy dro-pyridine derivative (1), which when boiled with dilute nitric acid readily undergoes dehydrogenation and aromatisation" to gb e the diethyl ester of collidine (or 2,4,6-trimethyl-pyridine-3,5 dicarboxylic acid (II)). For the initial condensation the solid aldehyde-ammonia can conveniently be used in place of the separate reagents. [Pg.295]

Oxidation of benzoin with concentrated nitric acid or by catalytic amounts of cupric salts in acetic acid solution, which are regenerated continuously by ammonium nitrate, yields the diketone benzil ... [Pg.709]

Benzil (and other a-diketones Ar—CO—CO—Ar) upon refluxing with aqueous-alcoholic potassium hydroxide undergo the beozilic acid rearrangement. Thus benzil is converted into a salt of benzilic acid ... [Pg.709]

A ketone having an a-hydrogen atom may be acylated with an eater or an acid anhydride to form a p diketone ... [Pg.861]

A mixture of an acid anhydride and a ketone is saturated with boron trifluoride this is followed by treatment with aqueous sodium acetate. The quantity of boron trifluoride absorbed usually amounts to 100 mol per cent, (based on total mola of ketone and anhydride). Catalytic amounts of the reagent do not give satisfactory results. This is in line with the observation that the p diketone is produced in the reaction mixture as the boron difluoride complex, some of which have been isolated. A reasonable mechanism of the reaction postulates the conversion of the anhydride into a carbonium ion, such as (I) the ketone into an enol type of complex, such as (II) followed by condensation of (I) and (II) to yield the boron difluoride complex of the p diketone (III) ... [Pg.861]

Decant the liquid layer into a 2 5 litre flask, and dissolve the sodium derivative of acetylacetone in 1600 ml. of ice water transfer the solution to the flask. Separate the impiue ethyl acetate layer as rapidly as possible extract the aqueous layer with two 200 ml. portions of ether and discard the ethereal extracts. Treat the aqueous layer with ice-cold dilute sulphimic acid (100 g. of concentrated sulphiu-ic acid and 270 g. of crushed ice) until it is just acid to htmus. Extract the diketone from the solution with four 200 ml. portions of ether. Leave the combined ether extracts standing over 40 g. of anhydrous sodium sulphate (or the equivalent quantity of anhydrous magnesium sulphate) for 24 hours in the ice chest. Decant the ether solution into a 1500 ml. round-bottomed flask, shake the desiccant with 100 ml. of sodium-dried ether and add the extract to the ether solution. Distil off the ether on a water bath. Transfer the residue from a Claisen flask with fractionating side arm (Figs. II, 24, 4r-5) collect the fraction boiling between 130° and 139°. Dry this over 5 g. of anhydrous potassium carbonate, remove the desiccant, and redistil from the same flask. Collect the pure acetji-acetone at 134r-136°. The yield is 85 g. [Pg.864]

Dilute sodium hydroxide solution. Carboxylic acids (RCOOH), sulphonic acids (RSO3H), phenols (ArOH), thiophenols (ArSH), mer-captans (RSH), imides (RCONHCOR), aryl sulphonamides (AxSOjNHj), arylsulphonyl derivatives of primary amines (AxSOjNHR), oximes (RCH=NOH), primary and secondary nitro compounds (RCH=NOOH and RjC=NOOH-oci forms), and some enols (e.g., of 1 3-diketones... [Pg.1048]

The polyhydric alcohols of Solubility Group II are liquids of relatively high boiling point and may be detected inter alia by the reactions already described for Alcohols (see 6). Compounds containing two hydroxyl groups attached to adjacent carbon atoms (1 2-glyeols), a-hydroxy aldehydes and ketones, and 1 2-diketones may be identified by the periodic acid test, given in reaction 9. [Pg.1069]

Suggestions as to the methods for identifying the above classes of compounds will be found under Class Reactiona in Section XI,7. Some fimther remarks upon enolic compounds (see Table IV,1I4A) may be made here. Enols may be divided into (a) p-keto esters and (b) 1 3-diketones. With 5 per cent, sodium hydroxide solution, a p-keto ester yields the salt of the corresponding acid, which when heated with dilute hydrochloric acid is decarboxylated to a ketone ... [Pg.1089]

A 1 3-diketone, under similar conditions, affords a ketone and the salt of an acid ... [Pg.1089]

Bcamples of metal-ion catalysed organic reactions in water where the catalyst acts exclusively as Lewis acid are the hromination of diketones" " and the decarboxylation of oxaloacetate. The latter reaction has been studied in detail. In 1941 it was demonstrated that magnesium(II) ions catalyse this reaction" Later also catalysis by other multivalent metal ions, such as Zn(II), Mn(II), Cu(II), Cd(ir), Fe(II), Pb(II), Fe(III)... [Pg.46]

The Michael reaction is of central importance here. This reaction is a vinylogous aldol addition, and most facts, which have been discussed in section 1.10, also apply here the reaction is catalyzed by acids and by bases, and it may be made regioselective by the choice of appropriate enol derivatives. Stereoselectivity is also observed in reactions with cyclic educts. An important difference to the aldol addition is, that the Michael addition is usually less prone to sterical hindrance. This is evidenced by the two examples given below, in which cyclic 1,3-diketones add to o, -unsaturated carbonyl compounds (K. Hiroi, 1975 H, Smith, 1964). [Pg.71]

Cydopentane reagents used in synthesis are usually derived from cyclopentanone (R.A. Ellison, 1973). Classically they are made by base-catalyzed intramolecular aldol or ester condensations (see also p. 55). An important example is 2-methylcydopentane-l,3-dione. It is synthesized by intramolecular acylation of diethyl propionylsucdnate dianion followed by saponification and decarboxylation. This cyclization only worked with potassium t-butoxide in boiling xylene (R. Bucourt, 1965). Faster routes to this diketone start with succinic acid or its anhydride. A Friedel-Crafts acylation with 2-acetoxy-2-butene in nitrobenzene or with pro-pionyl chloride in nitromethane leads to acylated adducts, which are deacylated in aqueous acids (V.J. Grenda, 1967 L.E. Schick, 1969). A new promising route to substituted cyclopent-2-enones makes use of intermediate 5-nitro-l,3-diones (D. Seebach, 1977). [Pg.81]

In an intramolecular aldol condensation of a diketone many products are conceivable, since four different ends can be made. Five- and six-membered rings, however, wUl be formed preferentially. Kinetic or thermodynamic control or different acid-base catalysts may also induce selectivity. In the Lewis acid-catalyzed aldol condensation given below, the more substituted enol is formed preferentially (E.J. Corey, 1963 B, 1965B). [Pg.93]

Internal alkynes are oxidized to acytoins by thalliuin(III) in acidic solution (A. McKil-lop, 1973 G.W. Rotermund, 1975) or to 1,2-diketones by permanganate or by in situ generated ruthenium tetroxide (D.G. Lee, 1969, 1973 H. Gopal, 1971). Terminal alkynes undergo oxidative degradation to carboxylic acids with loss of the terminal carbon atom with these oxidants. [Pg.132]

The most commonly used protected derivatives of aldehydes and ketones are 1,3-dioxolanes and 1,3-oxathiolanes. They are obtained from the carbonyl compounds and 1,2-ethanediol or 2-mercaptoethanol, respectively, in aprotic solvents and in the presence of catalysts, e.g. BF, (L.F. Fieser, 1954 G.E. Wilson, Jr., 1968), and water scavengers, e.g. orthoesters (P. Doyle. 1965). Acid-catalyzed exchange dioxolanation with dioxolanes of low boiling ketones, e.g. acetone, which are distilled during the reaction, can also be applied (H. J. Dauben, Jr., 1954). Selective monoketalization of diketones is often used with good success (C. Mercier, 1973). Even from diketones with two keto groups of very similar reactivity monoketals may be obtained by repeated acid-catalyzed equilibration (W.S. Johnson, 1962 A.G. Hortmann, 1969). Most aldehydes are easily converted into acetals. The ketalization of ketones is more difficult for sterical reasons and often requires long reaction times at elevated temperatures. a, -Unsaturated ketones react more slowly than saturated ketones. 2-Mercaptoethanol is more reactive than 1,2-ethanediol (J. Romo, 1951 C. Djerassi, 1952 G.E. Wilson, Jr., 1968). [Pg.165]

Active methylene or methine compounds, to which two EWGs such as carbonyl, alko.xycarbonyl, formyl, cyano, nitro, and sulfonyl groups are attached, react with butadiene smoothly and their acidic hydrogens are displaced with the 2,7-octadienyl group to give mono- and disubstituted compounds[59]. 3-Substituted 1,7-octadienes are obtained as minor products. The reaction is earned out with a /3-keto ester, /9-diketone, malonate, Q-formyl ketones, a-cyano and Q-nitro esters, cya noacetamide, and phenylsulfonylacetate. Di(octadienyl)malonate (61) obtained by this reaction is converted into an... [Pg.432]


See other pages where 1.3- Diketones acidity is mentioned: [Pg.1223]    [Pg.190]    [Pg.200]    [Pg.101]    [Pg.1223]    [Pg.250]    [Pg.139]    [Pg.140]    [Pg.158]    [Pg.163]    [Pg.226]    [Pg.1070]    [Pg.46]    [Pg.209]    [Pg.25]    [Pg.764]   
See also in sourсe #XX -- [ Pg.764 ]




SEARCH



0-Diketones carboxylic acid amide

0-Diketones carboxylic acid chloride

0-Diketones dicarboxylic acid ester

1.2- Diketones, Benzilic acid rearrangement

Diketones dicarboxylic acid anhydrides

Diketones nitrations, nitric acid

Diketones, acid catalyzed

Diketones, acid catalyzed acids

Diketones, acid catalyzed acylation

Diketones, acid catalyzed addition

Diketones, acid catalyzed alkenes

Diketones, acid catalyzed from furans

Diketones, acid catalyzed ketones

Diketones, acid catalyzed pyrans

Diketones, acid catalyzed reagents

Diketones, acid catalyzed with amines

Diketones, acid catalyzed with hydrazines

Hydroxy diketones acid esters

Hydroxy-acids diketones

Ketone-acids => 1,3-diketones

Ricinoleic acid 1,5-diketone cyclization

© 2024 chempedia.info