Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion ultracentrifuge

Note that this method of standardizing D values makes no allowance for the possibility that a molecule may change size, shape, or solvation with changes in temperature. In the next section we shall survey the behavior of polymeric materials in an ultracentrifuge. We shall see that diffusion coefficients can be... [Pg.634]

We have emphasized biopolymers in this discussion of the ultracentrifuge and in the discussion of diffusion in the preceding sections, because these two complementary experimental approaches have been most widely applied to this type of polymer. Remember that from the combination of the two phenomena, it is possible to evaluate M, f, and the ratio f/fo. From the latter, various possible combinations of ellipticity and solvation can be deduced. Although these methods can also be applied to synthetic polymers to determine M, they are less widely used, because the following complications are more severe with the synthetic polymers ... [Pg.641]

With this relationship for all samples was calculated from ninh This M is used for evaluating the reaction data. The ultracen rifuge (u.c measurements were carried out in a Spinco model E analytical ultracentrifuge, with 0.4% solutions in 90% formic acid containing 2.3 M KCl. By means of the sedimenta- ion diffusion equilibrium method of Scholte (13) we determine M, M and M. The buoyancy factor (1- vd = -0.086) necessary for tSe calculation of these molecular weights from ultracentrifugation data was measured by means of a PEER DMA/50 digital density meter. [Pg.141]

Alternatively, in sedimentation equilibrium experiments, the ultracentrifuge is operated at slow speeds for longer time to permit the solute molecules to attain equilibrium between sedimentation and diffusion. If the sample is monodisperse, its concentrations cb c2 can be measured at 2 positions xh x2 in the cell. [Pg.124]

The movement of the analyte is an essential feature of separation techniques and it is possible to define in general terms the forces that cause such movement (Figure 3.1). If a force is applied to a molecule, its movement will be impeded by a retarding force of some sort. This may be as simple as the frictional effect of moving past the solvent molecules or it may be the effect of adsorption to a solid phase. In many methods the strength of the force used is not important but the variations in the resulting net force for different molecules provide the basis for the separation. In some cases, however, the intensity of the force applied is important and in ultracentrifugal techniques not only can separation be achieved but various physical constants for the molecule can also be determined, e.g. relative molecular mass or diffusion coefficient. [Pg.94]

An analytical ultracentrifugation method for determining the molecular mass, diffusion coefficient, and/or state of oligomerization of a macromolecule by conducting sedimentation conditions to establish an equilibrium distribution of the macromolecule from the meniscus to the bottom of the observation cell. [Pg.632]

Ultracentrifugation Minimal non-specific binding and osmotic volume shifts. Large plasma volumes required, long assay time, issues such as sedimentation, back diffusion and viscosity. Potential for lipoprotein contamination of plasma water layer. [28, 29]... [Pg.202]

Although the molecular weight of the polysaccharide was not determined, its rapid rate of diffusion on ultracentrifugation, and the fact that synthetic boundary-cells had to be used, indicated that the molecular weight was less than 10,000. The molecular weight of buckwheat-honey polysaccharide is 9,000. [Pg.307]

It is our objective in this chapter to outline the basic concepts that are behind sedimentation and diffusion. As we see in this chapter, gravitational and centrifugal sedimentation are frequently used for particle-size analysis as well as for obtaining measures of solvation and shapes of particles. Diffusion plays a much more prevalent role in numerous aspects of colloid science and is also used in particle-size analysis, as we see in Chapter 5 when we discuss dynamic light scattering. The equilibrium between centrifugation and diffusion is particularly important in analytical and preparative ultracentrifuges. [Pg.63]

Most probable settling velocity from sedimentation data Particle-size determination from sedimentation equation Sedimentation in an ultracentrifuge Solvation and ellipticity from sedimentation data Diffusion and Gaussian distribution Temperature-dependence of diffusion coefficients... [Pg.638]

It would be of considerable interest to extend the technique just presented to problems involving nonlinear equations because there are many situations in ultracentrifugation where nonideality is a dominant feature. Furthermore, it is known (4, 14) that even for two-component systems with nonideality the theory for estimating the sedimentation constant based on a diffusion-free (c = 0) approximation can lead to systematic error. Therefore, the development of an approximate procedure for nonlinear equations would be useful for further progress in analytical separation methods. [Pg.220]


See other pages where Diffusion ultracentrifuge is mentioned: [Pg.300]    [Pg.300]    [Pg.635]    [Pg.393]    [Pg.393]    [Pg.31]    [Pg.214]    [Pg.215]    [Pg.227]    [Pg.248]    [Pg.249]    [Pg.279]    [Pg.17]    [Pg.232]    [Pg.358]    [Pg.343]    [Pg.125]    [Pg.147]    [Pg.82]    [Pg.13]    [Pg.632]    [Pg.214]    [Pg.11]    [Pg.86]    [Pg.224]    [Pg.204]    [Pg.451]    [Pg.122]    [Pg.23]    [Pg.117]    [Pg.6]    [Pg.41]    [Pg.50]    [Pg.68]    [Pg.65]    [Pg.78]    [Pg.129]    [Pg.100]    [Pg.205]    [Pg.538]    [Pg.205]   
See also in sourсe #XX -- [ Pg.475 ]




SEARCH



Ultracentrifugation

Ultracentrifuge

© 2024 chempedia.info