Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion electrolytic cells

Fluorine. Fluorine is the most reactive product of all electrochemical processes (63). It was first prepared in 1886, but important quantities of fluorine were not produced until the early 1940s. Fluorine was required for the production of uranium hexafluoride [7783-81 -5] UF, necessary for the enrichment of U (see DIFFUSION SEPARATION METHODS). The Manhattan Project in the United States and the Tube Alloy project in England contained parallel developments of electrolytic cells for fluorine production (63). The principal use of fluorine continues to be the production of UF from UF. ... [Pg.78]

Fig. 20.1 Potential and concentration gradients in the electrolytic cell CU/CUSO4/CU. (a) The electrodes are unpolarised the potential dilference is the equilibrium potential and there is no concentration gradient in the diffusion layer. (f>) The electrodes are polarised Ep of the anode is now more positive than E. whilst E of the cathode is more negative and concentration gradients exist across the diffusion layer c, C), are the concentrations at the electrode... Fig. 20.1 Potential and concentration gradients in the electrolytic cell CU/CUSO4/CU. (a) The electrodes are unpolarised the potential dilference is the equilibrium potential and there is no concentration gradient in the diffusion layer. (f>) The electrodes are polarised Ep of the anode is now more positive than E. whilst E of the cathode is more negative and concentration gradients exist across the diffusion layer c, C), are the concentrations at the electrode...
Similar considerations apply of course to the opposing electromotive forces of polarisation during electrolysis, when the process is executed reversibly, since an electrolytic cell is, as we early remarked, to be considered as a voltaic cell working in the reverse direction. In this way Helmholtz (ibid.) was able to explain the fluctuations of potential in the electrolysis of water as due to the variations of concentration due to diffusion of the dissolved gases. It must not be forgotten, however, that peculiar phenomena—so-called supertension effects—depending on the nature of the electrodes, make their appearance here, and com-... [Pg.481]

In an earlier note (p. 9) we mentioned the occurrence of overvoltage in an electrolytic cell (and overpotentials at single electrodes), which means that often the breakthrough of current requires an Uappl = Eiecomp r] V higher than Ehack calculated by the Nernst equation as this phenomenon is connected with activation energy and/or sluggishness of diffusion we shall treat the subject under the kinetic treatment of the theory of electrolysis (Section 3.2). [Pg.117]

The diaphragm cell consists of multiple electrolytic cells having the anode plates and cathodes mounted vertically and parallel to each other. The cathodes, often flat hollow perforated steel structures that are covered with asbestos fibers, serve as the diaphragm that prevents the mixing of hydrogen and chlorine and back diffusion of hydroxide (OH) ions from the cathode to the anode. Brine fed into the cell is decomposed to approximately half of its original concentration to produce chlorine gas at the anode and hydrogen and sodium hydroxide at the cathode. [Pg.924]

The design of biocatalytic electrodes for activity toward gaseous substrates, such as dioxygen or hydrogen, requires special consideration. An optimal electrode must balance transport in three different phases, namely, the gaseous phase (the source of substrate), the aqueous phase (where the product water is released and ionic transport takes place), and the solid phase (where electronic transport occurs). Whereas the selectivity of biocatalysts facilitates membraneless cells for implementation in biological systems that provide an ambient electrolyte, gas-diffusion biofuel cells require an electro-... [Pg.643]

Studies by Sedlak (j6) have shown a similar response-flow relationship for liquid electrolyte cells which utilize a teflon-bonded diffusion electrode. The empirical equations and relationships derived generally apply to the SPE sensor cells. [Pg.564]

For a better comprehension of the ED processes it is necessary to refresh a few basic concepts and definitions regarding the electrolytic cell and thermodynamic electrode potential, Faraday s laws, current efficiency, ion conduction, diffusivity, and transport numbers in solution. [Pg.270]

Starved electrolyte battery — A -> battery with minimum amount of -> electrolyte. The electrolyte in starved electrolyte cells or batteries exists in the porous structure of the - electrodes and absorbed in the separator, so it contains little or no free fluid electrolytic solution. This type of batteries is used in certain constructions of sealed - lead-acid and -> nickel-cadmium batteries that rely on gas diffusion and recombination on the electrodes during charging or overcharging in order to maintain maintenance-free conditions, and to suppress pressure buildup. Starved electrolyte batteries benefit from larger - energy density due to the reduced amount of electrolyte. This design may suffer from poor heat dissipation compared with -> flooded batteries, thus for high power applications this point has to be taken into account. [Pg.638]

In aqueous electrochemistry, concentration overpotentiai is frequently important due to low reactant and/or product diffusivities in the aqueous phase and a low operating temperature. In the solid electrolyte cell of the PEVD system, mass transfer in the gas phase and chemical reaction at higher temperatures are usually rapid and, consequently, concentration overpotentiai is not that significant, especially at low PEVD currents and high PEVD operating temperatures. [Pg.154]

In coulometry the stoichiometry of the electrode process should be known and should proceed with 100% current efficiency, and the product of reaction at any other electrode must not interfere with the reaction at the electrode of interest. If there are intermediate reactions, they too must proceed with the desired accuracy. In practice the electrolytic cell is designed to include isolation chambers. Losses of solute through diffusion, through ionic or electrical migration, and simply through bulk transfer must be minimal. Finally, the end point has to be determined by one of the many techniques used in titrations generally, whether coulometric or not. Both indeterminate and determinate end-point errors limit the overall accuracy achieved. Cooper and Quayle critically examined errors in coulometry, and Lewis reviewed coulometric techniques. [Pg.100]

The Importance of Concentration Polarization As noted earlier, concentration polarization occurs when the effects of diffusion, migration, and convection are insufficient to transport a reactant to or from an electrode surface at a rate that produces a current of the magnitude given by Equation 22-2. Concentration polarization requires applied potentials that are larger than calculated from Equation 22-2 to maintain a given current in an electrolytic cell (see Figure 22-2). Similarly, the phenomenon causes a galvanic cell potential to be smaller than the value predicted on the basis of the theoretical potential and the IR drop. [Pg.640]

The current efficiency of acid/base generation and the purity of the acid and base made with bipolar membranes drops off as concentrations increase, because Donnan exclusion diminishes with increasing solution concentrations. Further, the production rate is limited by the rate of diffusion of water into the bipolar membrane. Nevertheless, there are substantial advantages to the process. Since there are no gases evolved at the bipolar membranes, the energy associated with gas evolution is saved, and the power consumption is about half that of electrolytic cells. Compared to the electrodes used in conventional electrolytic cells, the bipolar membranes are inexpensive. Where dilute (e.g., 1 N) acids or bases are needed, bipolar membranes offer the prospect of low cost and minimum unwanted by-products. [Pg.494]


See other pages where Diffusion electrolytic cells is mentioned: [Pg.1442]    [Pg.291]    [Pg.594]    [Pg.125]    [Pg.239]    [Pg.322]    [Pg.155]    [Pg.148]    [Pg.116]    [Pg.331]    [Pg.6]    [Pg.33]    [Pg.183]    [Pg.139]    [Pg.36]    [Pg.166]    [Pg.199]    [Pg.244]    [Pg.292]    [Pg.518]    [Pg.12]    [Pg.447]    [Pg.228]    [Pg.287]    [Pg.1265]    [Pg.37]    [Pg.360]    [Pg.48]    [Pg.102]    [Pg.236]    [Pg.335]    [Pg.504]    [Pg.290]    [Pg.372]    [Pg.118]   
See also in sourсe #XX -- [ Pg.680 ]




SEARCH



Diffusion cell

Diffusivities electrolytes

Electrolytes cells

Electrolytes diffusivity

Electrolytic cell

Polymer electrolyte fuel cells diffusion

© 2024 chempedia.info