Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion-convection layer formation

This paper reports the mathematical modelling of electrochemical processes in the Soderberg aluminium electrolysis cell. We consider anode shape changes, variations of the potential distribution and formation of a gaseous layer under the anode surface. Evolution of the reactant concentrations is described by the system of diffusion-convection equations while the elliptic equation is solved for the Galvani potential. We compare its distribution with the C02 density and discuss the advantages of the finite volume method and the marker-and-cell approach for mathematical modelling of electrochemical reactions. [Pg.141]

However, with LNGs having different compositions as well as temperatures, it appears advisable that 100 % mixing practices are adopted during refuelling and refills, to prevent the initial formation of multiple layers of liquid. When the LNG is subsequently pressurised, with zero loss of vapour, there is then no chance of double-diffusive convection leading to spontaneous mixing and rollover between adjacent layers. [Pg.104]

Slime is a network of secreted strands (extracellular polymers) intermixed with bacteria, water, gases, and extraneous matter. Slime layers occlude surfaces—the biological mat tends to form on and stick to surfaces. Surface shielding is further accelerated by the gathering of dirt, silt, sand, and other materials into the layer. Slime layers produce a stagnant zone next to surfaces that retards convective oxygen transport and increases diffusion distances. These properties naturally promote oxygen concentration cell formation. [Pg.124]

It follows from the above that the mechanism for electrical potential oscillation across the octanol membrane in the presence of SDS would most likely be as follows dodecyl sulfate ions diffuse into the octanol phase (State I). Ethanol in phase w2 must be available for the transfer energy of DS ions from phase w2 to phase o to decrease and thus, facilitates the transfer of DS ions across this interface. DS ions reach interface o/wl (State II) and are adsorbed on it. When surfactant concentration at the interface reaches a critical value, a surfactant layer is formed at the interface (State III), whereupon, potential at interface o/wl suddenly shifts to more negative values, corresponding to the lower potential of oscillation. With change in interfacial tension of the interface, the transfer and adsorption of surfactant ions is facilitated, with consequent fluctuation in interface o/ wl and convection of phases o and wl (State IV). Surfactant concentration at this interface consequently decreased. Potential at interface o/wl thus takes on more positive values, corresponding to the upper potential of oscillation. Potential oscillation is induced by the repetitive formation and destruction of the DS ion layer adsorbed on interface o/wl (States III and IV). This mechanism should also be applicable to oscillation with CTAB. Potential oscillation across the octanol membrane with CTAB is induced by the repetitive formation and destruction of the cetyltrimethylammonium ion layer adsorbed on interface o/wl. Potential oscillation is induced at interface o/wl and thus drugs were previously added to phase wl so as to cause changes in oscillation mode in the present study. [Pg.711]

Various possible steps are involved in the transfer of an adsorbate to the adsorption layer. Transport to the surface by convection or molecular diffusion, attachment to the surface, surface diffusion, dehydration, formation of a bond with the surface constituents. [Pg.97]

Upon dissolving Al into liquid Ga, the alumina layer that instantly forms from exposure to air or water at the surface is either discontinuous or porous. In either case the surface of the Ga-Al liquid is not passivated. As a result, when water contacts the surface of the liquid, Al atoms at the surface split the water, liberating hydrogen and heat with the formation of alumina. Since the liquid is fluid, the alumina cannot form a bonded layer at the liquid surface that would passivate pure, solid Al. Instead, the alumina is swept away by convection or agitation as a suspension of alumina particles in the water. The surface of the liquid alloy is now depleted of Al. This depleted region at the surface is replenished via diffusion or convection of Al from the bulk to the surface where it continues to split water. This process continues until all of the Al in the liquid alloy is converted to alumina. To summarize, liquid Al-Ga alloys rich in Ga split water because the Al component is not passivated as it is in solid pure Al. [Pg.122]

After polymer skin formation, gel bubbles form on the device surface because the skin layer prevents any further outflow of water and pressure to expel water is exerted on the surface from the inside after shrinking [5], It is proposed that pressure is induced within the gel in the process of shrinking. This pressure may induce the outward convection of water. In the on state, drug is released from the surface by diffusion through the hydrated gel matrix. However, in the process from the on state to the off state upon increasing temperature, the drug must be released not only by diffusion but also by convective transport [9]. [Pg.182]

Similar processes for producing conducting polymeric films of benzene and its derivatives had been studied earlier [2-4], Necessary conditions for the successful realization of these processes are the use of a platinum electrode and a polar solvent in the presence of catalysts (Lewis acids) and thermostatting of the reactor at -75°C. A poly(para)phenylene polymerizate of the linear structure H-(-C6FLr)n-H with the degree of polymerization n, which varies between 3 and 16, is formed. Forced convection of monomeric molecules facilitates the polymerization reaction in the diffusion layer near the electrode and the formation of a dense film on the electrode surface and prevents the formation of poly(para)phenylene in the bulk. [Pg.299]

Sorption by sediment and suspended solids Sedimentation and resuspension of solids Aerosol formation at the air-water interface Uptake and release by biota Transport within water bodies Turbulent dispersion and convection Diffusion between upper mixed layer and bottom layer Transformation Biodegradation Photochemical degradation... [Pg.272]

Ash fouling appears to be initiated by the formation of a layer of sodium sulfate on the boiler tube. It is thought that thermal decomposition of sodium salts of carboxylic functional groups in the coal is the start of a sequence of reactions leading ultimately to the formation of sodium sulfate in the flame or flue gas. The convective mass transfer diffusion of the sodium-containing species through a boundary layer around the tube results in deposition of sodium sulfate on the tube surface. [Pg.49]

In this paper we combine the approach of [6], which consists in solving the equations for the electric fields in the anode, cathode and the electrolyte under steady state conditions, with our own approximation of the electrochemical reaction and the transport of reactants. We solve a 2D problem for the Laplace equation coupled with a system of the convection-diffusion equations through use of the boundary conditions. Therefore om problem becomes non-stationary. We study the time period of about one horn and observe the formation of the C02 boundary layer and the variation of the Galvani potential caused by it. [Pg.142]

It follows from the above discussion and numerical results that even a simple convective-diffusive model of concentration behaviour mechanism gives realistic results and yields a satisfactory description of the formation of the gaseous layer under the anode surface. The model may be improved by adding the electrolyte circulation and electromagnetic forces yet we hope that it will not change the main conclusions. The finite volume method proves to be a flexible and sufficiently accurate numerical technique for solving both the equations for the Galvani potential and the reactant concentrations. The marker-and-cell approach makes it possible to outline the electrode surfaces easily. [Pg.148]

In more complicated models both equations have to be generalised by coupling surface and bulk convective diffusion and hydrodynamics. The situation is finely balanced since the motion of the surface has an effect on the formation of the dynamic adsorption layer, and vice versa. Adsorption increases in the direction of the liquid motion while the surface tension decreases. This results in the appearance of forces directed against the flow and retards the surface motion. Thus, the dynamic layer theory should be based on the common solution of the diffusion equation, which takes into account the effect of surface motion on adsorption-desorption processes and of hydrodynamics equations combined with the effect of adsorption layers on the liquid interfacial motion (Levich 1962). [Pg.13]

The rate of the exchange process of surfactant molecules between the surface of a bubble (drop) and the bulk solution is determined not only by convective diffusion but in the general case also by the kinetics of the adsorption step itself Details of the physical model of the adsorption process are given in chapter 2 and 4. A method which takes into account the effect of adsorption kinetics on the formation of the dynamic adsorption layer was developed by Levich (1962). Using this method, attempts were made to generalize the theory of the dynamic adsorption layer of bouyant bubbles (Dukhin 1965). [Pg.323]

Concentration Polarisation is the accumulation of solute due to solvent convection through the membrane and was first documented by Sherwood (1965). It appears in every pressure dri en membrane process, but depending on the rejected species, to a very different extent. It reduces permeate flux, either via an increased osmotic pressure on the feed side, or the formation of a cake or gel layer on the membrane surface. Concentration polarisation creates a high solute concentration at the membrane surface compared to the bulk solution. This creates a back diffusion of solute from the membrane which is assumed to be in equilibrium with the convective transport. At the membrane, a laminar boundary layer exists (Nernst type layer), with mass conservation through this layer described by the Film Theory Model in equation (3.7) (Staude (1992)). cf is the feed concentration, Ds the solute diffusivity, cbj, the solute concentration in the boundary layer and x die distance from the membrane. [Pg.44]

A very simplified model of the convective diffusion was introduced in electrochemistry by Nemst (1904), which is based on the hypothesis of the formation, at the electrode surface, of a motionless limiting layer with a thickness 5n where diffusion occurs. [Pg.110]


See other pages where Diffusion-convection layer formation is mentioned: [Pg.42]    [Pg.55]    [Pg.417]    [Pg.324]    [Pg.506]    [Pg.68]    [Pg.252]    [Pg.512]    [Pg.144]    [Pg.147]    [Pg.212]    [Pg.83]    [Pg.274]    [Pg.220]    [Pg.144]    [Pg.90]    [Pg.94]    [Pg.90]    [Pg.178]    [Pg.105]    [Pg.247]    [Pg.183]    [Pg.9]    [Pg.1034]    [Pg.201]    [Pg.483]    [Pg.320]    [Pg.325]    [Pg.336]    [Pg.243]    [Pg.362]    [Pg.450]    [Pg.151]   
See also in sourсe #XX -- [ Pg.172 ]




SEARCH



Convection layer

Convective diffusion

Convective layer

Diffuse layer

Diffusion layer

© 2024 chempedia.info