Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Overall diffusion control

Modelling the Diffusion-Controlled Overall Kinetics and Cure Rate Law of Epoxy Systems... [Pg.129]

Similarly to the response at hydrodynamic electrodes, linear and cyclic potential sweeps for simple electrode reactions will yield steady-state voltammograms with forward and reverse scans retracing one another, provided the scan rate is slow enough to maintain the steady state [28, 35, 36, 37 and 38]. The limiting current will be detemiined by the slowest step in the overall process, but if the kinetics are fast, then the current will be under diffusion control and hence obey the above equation for a disc. The slope of the wave in the absence of IR drop will, once again, depend on the degree of reversibility of the electrode process. [Pg.1940]

The main conclusion to be drawn from these studies is that for most practical purposes the linear rate model provides an adequate approximation and the use of the more cumbersome and computationally time consuming diffusing models is generally not necessary. The Glueckauf approximation provides the required estimate of the effective mass transfer coefficient for a diffusion controlled system. More detailed analysis shows that when more than one mass transfer resistance is significant the overall rate coefficient may be estimated simply from the sum of the resistances (7) ... [Pg.264]

The lowest temperature for the reaction is 857°C but 1100—1300°C is required for acceptable rates. In this range, the two component reactions proceed at about the same rate and the reduction is diffusion controlled (54). Both reactions are reversible and the overall reaction is endothermic, requiting about 5.5 GJ/t Zn (1.2 X 10 cal/short ton Zn) at 1200 K. [Pg.404]

The quantity kcat/Km is a rate constant that refers to the overall conversion of substrate into product. The ultimate limit to the value of k at/Km is therefore set by the rate constant for the initial formation of the ES complex. This rate cannot be faster than the diffusion-controlled encounter of an enzyme and its substrate, which is between 10 to 10 per mole per second. The quantity kcat/Km is sometimes called the specificity constant because it describes the specificity of an enzyme for competing substrates. As we shall see, it is a useful quantity for kinetic comparison of mutant proteins. [Pg.206]

In the classical diffusion control model it is assumed that propagation occurs according to the terminal model (Scheme 7.1). The rate of the termination step is limited only by the rates of diffusion of the polymer chains. This rate may be dependent on the overall polymer chain composition. However, it does not depend solely on the chain end.166,16... [Pg.368]

In many other cases (by a change in experimental conditions, faster chemical reaction) the value of the catalytic current may be governed by the SET rate (see reaction 20). The value of k1 may be found and its variation as a function of the nature of the mediator (with several values for °j) leads by extrapolation (when k2 can be assumed to be diffusion-controlled) to the thermodynamical potential °RS02Ar which is somewhat different from the reduction potentials of overall ECE processes observed in voltammetry. [Pg.1017]

The overall charge (Qt) consumed to oxidize the film by a potential step from Ec to E has two components the charge consumed to relax the compact structure, which will be called the relaxation charge (Qr), and the charge consumed under diffusion control to complete the oxidation, called the later diffusion charge (Qd)- The following equation is obeyed ... [Pg.383]

These equations describe the full oxidation of a conducting polymer Submitted to a potential step under electrochemically stimulated confer-mational relaxation control as a function of electrochemical and structural variables. The initial term of /(f) includes the evolution of the current consumed to relax the structure. The second term indicates an interdependence between counter-ion diffusion and conformational changes, which are responsible for the overall oxidation and swelling of the polymer under diffusion control. [Pg.392]

As in chronoamperograms, the fraction of the overall oxidation charge involved in relaxation processes is quite small in the absence of any external stress. The share of the overall current at every potential between electrochemical processes occurring under relaxation control and those driven by swelling-diffusion control can be observed in Fig. 66. I(r) has... [Pg.421]

As the polymerization reaction proceeds, scosity of the system increases, retarding the translational and/ or segmental diffusion of propagating polymer radicals. Bimolecular termination reactions subsequently become diffusion controlled. A reduction in termination results in an increase in free radical population, thus providing more sites for monomer incorporation. The gel effect is assumed not to affect the propagation rate constant since a macroradical can continue to react with the smaller, more mobile monomer molecule. Thus, an increase in the overall rate of polymerization and average degree of polymerization results. [Pg.376]

The overall reaction mechanisms are diffusion-controlled, and the total solid state reaction can be summarized as follows ... [Pg.167]

Mass transport can be by migration, convection or diffusion. As discussed in chapter 1, in the presence of strong electrolyte migration can be neglected, as can convection if the solution is unstirred, at a uniform temperature and the timescale of the experiment is short (i.e. a few seconds). Thus, we can make the first distinction between electrode reactions that are dominated by step 1, diffusion-controlled, and those for which steps 1 and 2 contribute to the overall observed rate. [Pg.174]

Thus, cyclic or linear sweep voltammetry can be used to indicate whether a reaction occurs, at what potential and may indicate, for reversible processes, the number of electrons taking part overall. In addition, for an irreversible reaction, the kinetic parameters na and (i can be obtained. However, LSV and CV are dynamic techniques and cannot give any information about the kinetics of a typical static electrochemical reaction at a given potential. This is possible in chronoamperometry and chronocoulometry over short periods by applying the Butler Volmer equations, i.e. while the reaction is still under diffusion control. However, after a very short time such factors as thermal... [Pg.180]

The experimental and simulation results presented here indicate that the system viscosity has an important effect on the overall rate of the photosensitization of diary liodonium salts by anthracene. These studies reveal that as the viscosity of the solvent is increased from 1 to 1000 cP, the overall rate of the photosensitization reaction decreases by an order of magnitude. This decrease in reaction rate is qualitatively explained using the Smoluchowski-Stokes-Einstein model for the rate constants of the bimolecular, diffusion-controlled elementary reactions in the numerical solution of the kinetic photophysical equations. A more quantitative fit between the experimental data and the simulation results was obtained by scaling the bimolecular rate constants by rj"07 rather than the rf1 as suggested by the Smoluchowski-Stokes-Einstein analysis. These simulation results provide a semi-empirical correlation which may be used to estimate the effective photosensitization rate constant for viscosities ranging from 1 to 1000 cP. [Pg.105]

Alkenes are scavengers that are able to differentiate between carbenes (cycloaddition) and carbocations (electrophilic addition). The reactions of phenyl-carbene (117) with equimolar mixtures of methanol and alkenes afforded phenylcyclopropanes (120) and benzyl methyl ether (121) as the major products (Scheme 24).51 Electrophilic addition of the benzyl cation (118) to alkenes, leading to 122 and 123 by way of 119, was a minor route (ca. 6%). Isobutene and enol ethers gave similar results. The overall contribution of 118 must be more than 6% as (part of) the ether 121 also originates from 118. Alcohols and enol ethers react with diarylcarbenium ions at about the same rates (ca. 109 M-1 s-1), somewhat faster than alkenes (ca. 108 M-1 s-1).52 By extrapolation, diffusion-controlled rates and indiscriminate reactions are expected for the free (solvated) benzyl cation (118). In support of this notion, the product distributions in Scheme 24 only respond slightly to the nature of the n bond (alkene vs. enol ether). The formation of free benzyl cations from phenylcarbene and methanol is thus estimated to be in the range of 10-15%. However, the major route to the benzyl ether 121, whether by ion-pair collapse or by way of an ylide, cannot be identified. [Pg.15]

As was mentioned in the introduction to this chapter "diffusion-controlled dissolution" may occur because a thin layer either in the liquid film surrounding the mineral or on the surface of the solid phase (that is depleted in certain cations) limits transport as a consequence of this, the dissolution reaction becomes incongruent (i.e., the constituents released are characterized by stoichiometric relations different from those of the mineral. The objective of this section is to illustrate briefly, that even if the dissolution reaction of a mineral is initially incongruent, it is often a surface reaction which will eventually control the overall dissolution rate of this mineral. This has been shown by Chou and Wollast (1984). On the basis of these arguments we may conclude that in natural environments, the steady-state surface-controlled dissolution step is the main process controlling the weathering of most oxides and silicates. [Pg.187]

Whereas in acetonitrile the rate limiting step is an opening of the solvent shell of a reactant, in benzonitrile the back reaction of (5) between the protonated acridine orange cation (BH ) and the 3-methyl-4-nitrophenolate ion (A ) to form the ion pair is diffusion controlled (although the overall reaction to the neutral molecules is an endothermic process). Because of its lower dielectric constant than acetonitrile, the electrostatic interactions between reactants in benzonitrile outweigh specific solvent effects. In other words, in benzonitrile a rate limiting coupling of proton transfer to the reorientation of solvent dipoles does not occur and the measured rates are very fast. The ion recombination (I) + (II) in benzonitrile has a diffusion controlled specific rate (theoretical) k = 9 -1 -1... [Pg.79]

The extent to which a given reactant, such as oxygen, is able to utilize this additional surface area depends on the difficulty in diffusing through the particle to reach the pore surfaces and on the overall balance between diffusion control of the burning rate and kinetic control. To broadly characterize these competing effects, three zones of combustion of porous particles have been identified, as shown in Fig. 9.21. In Zone I the combustion rate is fully controlled by the surface reaction rate (kinetically controlled), because the diffusion... [Pg.539]


See other pages where Overall diffusion control is mentioned: [Pg.110]    [Pg.457]    [Pg.891]    [Pg.366]    [Pg.66]    [Pg.397]    [Pg.407]    [Pg.179]    [Pg.256]    [Pg.381]    [Pg.147]    [Pg.544]    [Pg.268]    [Pg.154]    [Pg.551]    [Pg.102]    [Pg.200]    [Pg.115]    [Pg.305]    [Pg.99]    [Pg.666]    [Pg.1218]    [Pg.439]    [Pg.33]    [Pg.254]    [Pg.121]    [Pg.122]    [Pg.232]   


SEARCH



Diffusion control

Diffusion controlled

Diffusion overall

© 2024 chempedia.info