Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Differential equation separable

Note that now Tj is a variable that is a function of position Zc in the cooling coif while T, the reactor temperature in the CSTR reactor, is a constant. We can solve this differential equation separately to obtain an average coolant temperature to insert in the reactor energy-balance equation. However, the heat load on the cooling coil can be comphcated to calculate because the heat transfer coefficient may not be constant. [Pg.261]

A different classification scheme for DEs, short for differential equations, separates those DEs with a single independent variable dependence, such as only time or only 1-dimensional position, from those depending on several variables, such as time and spatial position. DEs involving a single independent variable are routinely called ODEs, or ordinary differential equations. DEs involving several independent variables such as space and time are called PDEs, or partial differential equations because they involve partial derivatives. [Pg.34]

This is a differential equation separable in the classical variables u and difference between this study and the one using the theory of special relativity, where the factor 2 in front of fi is missing in Eq. (1.53), see Ref. [4] for more details. [Pg.17]

It turns out that there is another branch of mathematics, closely related to tire calculus of variations, although historically the two fields grew up somewhat separately, known as optimal control theory (OCT). Although the boundary between these two fields is somewhat blurred, in practice one may view optimal control theory as the application of the calculus of variations to problems with differential equation constraints. OCT is used in chemical, electrical, and aeronautical engineering where the differential equation constraints may be chemical kinetic equations, electrical circuit equations, the Navier-Stokes equations for air flow, or Newton s equations. In our case, the differential equation constraint is the TDSE in the presence of the control, which is the electric field interacting with the dipole (pemianent or transition dipole moment) of the molecule [53, 54, 55 and 56]. From the point of view of control theory, this application presents many new features relative to conventional applications perhaps most interesting mathematically is the admission of a complex state variable and a complex control conceptually, the application of control teclmiques to steer the microscopic equations of motion is both a novel and potentially very important new direction. [Pg.268]

The importance of numerical treatments, however, caimot be overemphasized in this context. Over the decades enonnous progress has been made in the numerical treatment of differential equations of complex gas-phase reactions [8, 70, 71], Complex reaction systems can also be seen in the context of nonlinear and self-organizing reactions, which are separate subjects in this encyclopedia (see chapter A3,14. chapter C3.6). [Pg.793]

This part of our chapter has shown that the use of the two variables, moduli and phases, leads in a direct way to the derivation of the continuity and Hamilton-Jacobi equations for both scalar and spinor wave functions. For the latter case, we show that the differential equations for each spinor component are (in the nearly nomelativistic limit) approximately decoupled. Because of this decoupling (mutual independence) it appears that the reciprocal relations between phases and moduli derived in Section III hold to a good approximation for each spinor component separately, too. For velocities and electromagnetic field strengths that ate nomrally below the relativistic scale, the Berry phase obtained from the Schrddinger equation (for scalar fields) will not be altered by consideration of the Dirac equation. [Pg.168]

Dyna.micPerforma.nce, Most models do not attempt to separate the equiUbrium behavior from the mass-transfer behavior. Rather they treat adsorption as one dynamic process with an overall dynamic response of the adsorbent bed to the feed stream. Although numerical solutions can be attempted for the rigorous partial differential equations, simplifying assumptions are often made to yield more manageable calculating techniques. [Pg.286]

Equations with Separable Variables Every differential equation of the first order and of the first degree can be written in the form M x, y) dx + N x, y) dy = 0. If the equation can be transformed so that M does not involve y and N does not involve x, then the variables are said to be separated. The solution can then be obtained by quadrature, which means that y = f f x) dx + c, which may or may not be expressible in simpler form. [Pg.454]

Separation of Variables This is a powerful, well-utilized method which is applicable in certain circumstances. It consists of assuming that the solution for a partial differential equation has the form U =f x)g(y)- If it is then possible to obtain an ordinary differential equation on one side of the equation depending only on x and on the other side only on y, the partial differential equation is said to be separable in the variables x, y. If this is the case, one side of the equation is a function of x alone and the other of y alone. The two can be equal only if each is a constant, say X. Thus the problem has again been reduced to the solution of ordinaiy differential equations. [Pg.457]

The variables are separable, but an integration in closed form is not possible because of the odd exponent. Numerical integration followed by substitution into (4) will provide both A and B as functions of t. The plots, however, are of solutions of the original differential equations with ODE. [Pg.709]

In general, fiiU time-dependent analytical solutions to differential equation-based models of the above mechanisms have not been found for nonhnear isotherms. Only for reaction kinetics with the constant separation faclor isotherm has a full solution been found [Thomas, y. Amei Chem. Soc., 66, 1664 (1944)]. Referred to as the Thomas solution, it has been extensively studied [Amundson, J. Phy.s. Colloid Chem., 54, 812 (1950) Hiester and Vermeiilen, Chem. Eng. Progre.s.s, 48, 505 (1952) Gilliland and Baddonr, Jnd. Eng. Chem., 45, 330 (1953) Vermenlen, Adv. in Chem. Eng., 2, 147 (1958)]. The solution to Eqs. (16-130) and (16-130) for the same boimdaiy condifions as Eq. (16-146) is... [Pg.1529]

The development of mathemafical models is described in several of the general references [Giiiochon et al., Rhee et al., Riithven, Riithven et al., Suzuki, Tien, Wankat, and Yang]. See also Finlayson [Numerical Methods for Problems with Moving Front.s, Ravenna Park, Washington, 1992 Holland and Liapis, Computer Methods for Solving Dynamic Separation Problems, McGraw-Hill, New York, 1982 Villadsen and Michelsen, Solution of Differential Equation Models by... [Pg.1529]

This simple differential equation is separable and so each side may be solved... [Pg.325]

Superposition of Flows Potential flow solutions are also useful to illustrate the effect of cross-drafts on the efficiency of local exhaust hoods. In this way, an idealized uniform velocity field is superpositioned on the flow field of the exhaust opening. This is possible because Laplace s equation is a linear homogeneous differential equation. If a flow field is known to be the sum of two separate flow fields, one can combine the harmonic functions for each to describe the combined flow field. Therefore, if d)) and are each solutions to Laplace s equation, A2, where A and B are constants, is also a solution. For a two-dimensional or axisymmetric three-dimensional flow, the flow field can also be expressed in terms of the stream function. [Pg.840]

The solution to the governing differential equation, Equation (5.32), is not as simple as for specially orthotropic laminated plates because of the presence of D. g and D2g. The Fourier expansion of the deflection w. Equation (5.29), is an example of separation of variables. However, because of the terms involving D.,g and D2g, the expansion does not satisfy the governing differential equation because the variables are not separable. Moreover, the deflection expansion also does not satisfy the boundary conditions. Equation (5.33), again because of the terms involving D. g and D2g. [Pg.291]

The presence of D g 26 governing differential equation and the boundary conditions renders a closed-form solution impossible. That is, in analogy to both bending and buckling of a symmetric angle-ply (or anisotropic) plate, the variation in lateral displacement, 5vy, cannot be separated into a function of x alone times a function of y alone. Again, however, the Rayleigh-Ritz approach is quite useful. The expression... [Pg.318]

In the Iheory of differential equations, the quantity is called a separation ( onstant. Here it is equal to the energy of the system. The latter equation can be instantly solved to give... [Pg.17]

Equation (8.4.3) is a linear first-order differential equation of concentration and reactor length. Using the separation of variables technique to integrate (8.4.3) yields... [Pg.205]

In some cases there also occur semistable limit cycles (in this discussion the single term cycle is used wherever it is unambiguous or if no confusion is to be feared) characterized by stability on one side and instability on the other side. Figure 6-5(a), (b), and (c) illustrate these definitions. Physically, only stable cycles are of interest the unstable cycles play the role of separating the zones of attraction of stable cycles in the case when there are several cycles. It is seen from this definition that, instead of an infinity of closed trajectories, we have now only one such trajectory determined by the differential equation itself and the initial conditions do not play any part. In fact, the term initial conditions means just one point (x0,y0) of the phase plane as a spiral trajectory O passes through that point and ultimately winds itself onto the cycle 0, it is clear that the initial conditions have nothing to do with this ultimate closed trajectory C—the stable [Pg.329]

For a more complex scheme, one writes a separate differential equation for each variable. For Scheme I, Eq. (5-54), for example, the two rate equations are... [Pg.114]

In the general case of a piston flow reactor, one must solve a fairly small set of simultaneous, ordinary differential equations. The minimum set (of one) arises for a single, isothermal reaction. In principle, one extra equation must be added for each additional reaction. In practice, numerical solutions are somewhat easier to implement if a separate equation is written for each reactive component. This ensures that the stoichiometry is correct and keeps the physics and chemistry of the problem rather more transparent than when the reaction coordinate method is used to obtain the smallest possible set of differential... [Pg.166]

This differential equation is readily solved by separation of variables, leading to... [Pg.268]

However, such an equality is impossible, since by changing one of arguments, for example, R, the first term varies while the second one remains the same, and correspondingly the sum of these terms cannot be equal to zero for arbitrary values of R and 0. Therefore, we have to conclude that neither term depends on the coordinates and each is constant. This fact constitutes the key point of the method of separation of variables, allowing us to describe the function C/ as a product of two functions, each of them depending on one coordinate only. For convenience, let us represent this constant in the form +m, where m is called a constant of separation. Thus, instead of Laplace s equation we have two ordinary differential equations of second order ... [Pg.58]

Equation (2.28) is now separable into two independent differential equations, one for each of the two independent variables x and t. The time-dependent equation is... [Pg.46]

The first term on the left-hand side of equation (2.77) depends only on the variable x, the second only on y, and the third only on z. No matter what the values of x, or y, or z, the sum of these three terms is always equal to the same constant E. The only way that this condition can be met is for each of the three terms to equal some constant, say E, Ey, and E, respectively. The partial differential equation (2.77) can then be separated into three equations, one for each variable... [Pg.61]

This partial differential equation may be readily separated by writing the wave function (R, r) as the product of two functions, one a function only of the center of mass variables X, Y, Z and the other a function only of the relative coordinates x, y, z... [Pg.159]

With this substitution, equation (6.10) separates into two independent partial differential equations... [Pg.159]

The left-hand side of equation (G.21) depends only on the variable 9, while the right-hand side depends only on cp. Following the same argument used in the solution of equation (2.28), each side of equation (G.21) must be equal to a constant, which we write as m. Thus, equation (G.21) separates into two differential equations... [Pg.323]


See other pages where Differential equation separable is mentioned: [Pg.204]    [Pg.204]    [Pg.1314]    [Pg.2270]    [Pg.65]    [Pg.464]    [Pg.286]    [Pg.45]    [Pg.306]    [Pg.316]    [Pg.334]    [Pg.36]    [Pg.3]    [Pg.272]    [Pg.592]    [Pg.132]    [Pg.190]    [Pg.345]    [Pg.47]    [Pg.93]    [Pg.126]    [Pg.160]    [Pg.271]   
See also in sourсe #XX -- [ Pg.31 , Pg.376 ]




SEARCH



Equation separation

Ordinary differential equations separable equation

Ordinary differential equations separable variables

Separation differential

Separation of Variables Method for Partial Differential Equations (PDEs) in Finite Domains

Variable separable differential equation

© 2024 chempedia.info