Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diethyl ether reagents

Diethyl ether is a mobile, colourless liquid having b.p. 35° and dy 0720. It has a characteristic odour, and a burning taste. It is used chiefly as a solvent, and was formerly widely used as an anaesthetic owing to its chemical non-reactivity, it is very seldom used actually as a reagent, except in the preparation of Grignard reagents (p. 280) where probably its chemical properties reinforce its solvent action. [Pg.81]

Benzene. The analytical reagent grade benzene is satisfactory for most purposes if required dry, it is first treated with anhydrous calcium chloride, filtered, and then placed over sodium wire (for experimental details, see under Diethyl ether, 1). [Pg.172]

Solutions of tert.-butylmagnesium chloride and cyclopentylmagnesium chloride in diethyl ether can be prepared in the same way. In these cases also the purity of the chlorides Is of great importance for a successful and smooth conversion into the Grignard reagent. [Pg.13]

After the air in the flask had been replaced completely with nitrogen, 100 ml of dry diethyl ether, 0.20 mol of the cumulenic ether (see Chapter V, Exps. 7, 8 and 11) and 1 g (note 1) of copper(l) bromide were placed in it. A solution of the Grignard-reagent, prepared from 0.50 mol of the chloride (see Chapter II,... [Pg.187]

The order of halide reactivity is I > Br > Cl > F and alkyl halides are more reac tive than aryl and vinyl halides Indeed aryl and vinyl chlorides do not form Grignard reagents m diethyl ether When more vigorous reaction conditions are required tetrahy drofuran (THF) is used as the solvent... [Pg.591]

Organolithium reagents (Section 14 3) Lithi um metal reacts with organic halides to pro duce organolithium compounds The organic halide may be alkyl alkenyl or aryl Iodides react most and fluorides least readily bro mides are used most often Suitable solvents include hexane diethyl ether and tetrahy drofuran... [Pg.615]

Suitable strong bases include the sodium salt of dimethyl sulfoxide (m dimethyl sulfox ide as the solvent) and organohthmm reagents (m diethyl ether or tetrahydrofuran)... [Pg.734]

Alkyl and arylboranes are obtained (35) from BF using the appropriate Grignard reagent, alkylalurninum halide, or zinc alkyl, using diethyl ether as the solvent (see also Organometallics) ... [Pg.160]

Barbier reported (1) in 1899 that a mixture of methyl iodide, a methyl ketone, and magnesium metal in diethyl ether produced a tertiary alcohol. Detailed studies by his student Victor Grignard are documented in his now classical doctoral thesis, presented in 1901. Grignard estabUshed (2) that the reaction observed by Barbier could be separated into three distinct steps Grignard reagent formation, Grignard reaction, and hydrolysis. [Pg.390]

Cooling is routinely appHed, either with ambient process water if THF is the solvent or with chilled brine if diethyl ether is used. Since Grignard reagents are particularly reactive with water, Hquid hydrocarbon coolants may be preferred, to eliminate the risk that could arise from a cooling-system leak. [Pg.394]

Crystal stmctures of Grignard reagents do not necessarily correspond to their stmcture in solution. In general, the crystal stmctures (61—64) indicate the reagents are ligated with THF or diethyl ether and are frequentiy observed to be dimers. The Mg atoms in the dimers do not have a Mg—Mg bond instead the dimers are typically held together by a haUde bridge. [Pg.395]

There are five components to the cost of using a Grignard reagent (/) magnesium metal, (2) the haUde, (J) the solvent, (4) the substrate, and (5) disposal of the by-products. The price of magnesium in mid-1992 was 3.20/kg, having risen from 1.20/kg in 1966 to 1.36/kg in 1970 and 2.90/kg in 1979. Prices for tetrahydrofuran and diethyl ether, the two most commonly used solvents, have also increased (Table 3) in the same period. The cost of the hahde depends on its stmcture, but as a general rule the order of cost is chloride < bromide < iodide. [Pg.395]

Other procedures have also been reported (38,110,111). The properties and chemistry of 9-BBN have been reviewed (112). The reagent is a white crystalline soHd, stable indefinitely at room temperature, soluble in hexane, carbon tetrachloride, benzene, tetrahydrofuran, and diethyl ether. It exists as a... [Pg.310]

Many organic reagents have been used successfully in Pu separation processes. The reagents include tri- -butyl phosphate (TBP) methyl isobutyl ketone thenoyl ttifluoroacetone (TTA) ethers, eg, diethyl ether, di- -butyl ether, tetraethylene glycol dibutyl ether trdaurylamine (TT,A) trioctylamine (TOA) di- -butyl phosphate (DBP) hexyl-di(2-ethylhexyl) phosphate (HDEHP) and many others. Of these, TBP is by far the most widely used (30,95). [Pg.201]

Excess alkylating reagent is required if the tetraorganotin is desired as the exclusive product. In commercial practice, the stoichiometry is kept at or below 4 1, since the cmde product is usually redistributed to lower organotin chlorides in a subsequent step and an ether is used as the solvent (86). The use of diethyl ether in the Grignard reaction has been generally replaced with tetrahydrofuran. [Pg.68]

Organolithium compounds are sometimes prepared in hydrocarbon solvents such as pentane and hexane, but nonnally diethyl ether is used. It is especially important that the solvent be anhydrous. Even trace amounts of water or alcohols react with lithium to form insoluble lithium hydroxide or lithium alkoxides that coat the surface of the metal and prevent it from reacting with the alkyl halide. Furthennore, organolithium reagents are strong bases and react rapidly with even weak proton sources to fonn hydrocarbons. We shall discuss this property of organolithium reagents in Section 14.5. [Pg.590]


See other pages where Diethyl ether reagents is mentioned: [Pg.1342]    [Pg.36]    [Pg.36]    [Pg.36]    [Pg.315]    [Pg.1342]    [Pg.36]    [Pg.36]    [Pg.36]    [Pg.315]    [Pg.150]    [Pg.1]    [Pg.8]    [Pg.9]    [Pg.10]    [Pg.17]    [Pg.47]    [Pg.346]    [Pg.1151]    [Pg.386]    [Pg.391]    [Pg.393]    [Pg.395]    [Pg.396]    [Pg.396]    [Pg.311]    [Pg.30]    [Pg.19]    [Pg.107]    [Pg.55]    [Pg.204]    [Pg.258]    [Pg.421]    [Pg.75]    [Pg.465]    [Pg.274]    [Pg.647]    [Pg.648]    [Pg.659]    [Pg.684]   
See also in sourсe #XX -- [ Pg.611 ]




SEARCH



Diethyl ether

Diethyl ether Grignard reagent with

Diethyl ether as solvent for Grignard reagents

© 2024 chempedia.info