Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diethyl carbonate, reaction with

Now run in a solution of 52 g. (53-5 ml.) of pure diethyl carbonate (1) in 70 ml. of anhydrous ether, with rapid stirring, over a period of about one hour. A vigorous reaction sets in and the ether refluxes continually. When the diethyl carbonate has been added, heat the flask on a water bath with stirring for another hour. Pour the reaction mixture, with frequent shaking, into a 2 litre round-bottomed flask containing 500 g. of crushed ice and a solution of 100 g. of ammonium chloride in 200 ml. of water. Transfer to a separatory funnel, remove the ether layer, and extract the aqueous solution with two 176 ml. portions of ether. Dry... [Pg.258]

Chiral 2-oxazolidones are useful recyclable auxiliaries for carboxylic acids in highly enantioselective aldol type reactions via the boron enolates derived from N-propionyl-2-oxazolidones (D.A. Evans, 1981). Two reagents exhibiting opposite enantioselectivity ate prepared from (S)-valinol and from (lS,2R)-norephedrine by cyclization with COClj or diethyl carbonate and subsequent lithiation and acylation with propionyl chloride at — 78°C. En-olization with dibutylboryl triflate forms the (Z)-enolates (>99% Z) which react with aldehydes at low temperature. The pure (2S,3R) and (2R,3S) acids or methyl esters are isolated in a 70% yield after mild solvolysis. [Pg.61]

One route to o-nitrobenzyl ketones is by acylation of carbon nucleophiles by o-nitrophenylacetyl chloride. This reaction has been applied to such nucleophiles as diethyl malonatc[l], methyl acetoacetate[2], Meldrum s acid[3] and enamines[4]. The procedure given below for ethyl indole-2-acetate is a good example of this methodology. Acylation of u-nitrobenzyl anions, as illustrated by the reaction with diethyl oxalate in the classic Reissert procedure for preparing indolc-2-carboxylate esters[5], is another route to o-nitrobenzyl ketones. The o-nitrophenyl enamines generated in the first step of the Leimgruber-Batcho synthesis (see Section 2.1) are also potential substrates for C-acylation[6,7], Deformylation and reduction leads to 2-sub-stituted indoles. [Pg.14]

In a reaction related to the mixed Claisen condensation nonenolizable esters are used as acylatmg agents for ketone enolates Ketones (via their enolates) are converted to p keto esters by reaction with diethyl carbonate... [Pg.892]

Fig. 2. Synthesis of uma2enil (18). The isonitrosoacetanihde is synthesized from 4-f1iioroani1ine. Cyclization using sulfuric acid is followed by oxidization using peracetic acid to the isatoic anhydride. Reaction of sarcosine in DMF and acetic acid leads to the benzodiazepine-2,5-dione. Deprotonation, phosphorylation, and subsequent reaction with diethyl malonate leads to the diester. After selective hydrolysis and decarboxylation the resulting monoester is nitrosated and catalyticaHy hydrogenated to the aminoester. Introduction of the final carbon atom is accompHshed by reaction of triethyl orthoformate to... Fig. 2. Synthesis of uma2enil (18). The isonitrosoacetanihde is synthesized from 4-f1iioroani1ine. Cyclization using sulfuric acid is followed by oxidization using peracetic acid to the isatoic anhydride. Reaction of sarcosine in DMF and acetic acid leads to the benzodiazepine-2,5-dione. Deprotonation, phosphorylation, and subsequent reaction with diethyl malonate leads to the diester. After selective hydrolysis and decarboxylation the resulting monoester is nitrosated and catalyticaHy hydrogenated to the aminoester. Introduction of the final carbon atom is accompHshed by reaction of triethyl orthoformate to...
Finar and coworkers (B-76MI40402) have made a detailed study of the pyrazolyl Grignard reagent (505). In addition to alcohols and ketones, the hydrocarbons (506) and (507) could be isolated, the first by heating the Grignard reagent (505) and the second by reaction with diethyl carbonate. [Pg.267]

The present method offers several advantages over earlier methods. The use of carbon tetrachloride instead of diethyl ether as solvent avoids the intrusion of certain radical-chain reactions with solvent which are observed with bromine and to a lesser degree with chlorine. In addition, the potassium bromide has a reduced solubility in carbon tetrachloride compared to diethyl ether, thus providing additional driving force for the reaction and ease of purification of product. The selection of bro-... [Pg.25]

In an altogether different type of approach, the hydrazone is formed in situ as a lithium salt. Wilson et al. (80JHC389) described this approach in the one-pot synthesis of 5-aryl-2-phenylpyrazol-3-ones 72a-f from the corresponding hydrazones 65a-f (Scheme 20). The latter were obtained by condensing ketones 64a-f with phenylhydrazine. Treatment of hydrazones 65a-f with n-butyllithium in dry THF, followed by the addition of half a molar equivalent of diethyl carbonate 67 and then quenching the reaction mixture with hydrochloric acid, produced pyrazol-3-ones 72a-f, along with products 71. The yields of the products 72 are in the range 22-97%. Four intermediates—66a-f, 68a-f, 69a-f, and 70a-f— were proposed for this reaction. [Pg.89]

Further work in this area showed that only one of the cou-marin rings was needed for biologic activity. Condensation of the hydroxyacetophenone, 4, with diethyl carbonate affords 4-hydroxycoumarin (2). The reaction may involve the 3-ketoester (5) cyclization of this would afford 2. Alternately, the reagent may first give the 0-acyl derivative cyclization as above will give the same product. Michael condensation of the coumarin with benzalacetone (6) affords the anticoagulant warfarin (named after its place of origin Wisconsin Alumni Research Foundation,... [Pg.331]

To the cooled (room temperature) reaction mixture, glacial acetic acid (15 ml) is added dropwise with stirring (formation of pasty solid), followed by 50 ml of ice-cold water (dissolution of the solid). The benzene layer is separated, the aqueous layer is extracted three times with 25-ml portions of benzene, and the combined benzene extracts are washed three times with 25-ml portions of cold water. Benzene is removed by distillation at atmospheric pressure, and excess diethyl carbonate is removed by distillation under aspirator pressure. The residue is distilled under vacuum, affording 2-carbethoxycyclooctanone, bp 85-8770.1 mm, 1.4795-1,4800, about 14 g (94%). [Pg.89]

The reaction mixture is then warmed on the steam bath for an additional two hours (90°C to 95°C). The excess hydrazine hydrate is removed in vacuo. The residue of viscous 1-hy-drazlno-3-morpholinyl-2-propanol Is not distilled, but is mixed with 10.16 g (0.0B6 mol) diethyl carbonate and a solution of 0.3 g sodium metal in 15 ml methyl alcohol. The mixture is refluxed about 2 hours under a 15 cm Widmer column, the alcohol being removed leaving a thick, green liquid residue, which is cooled and the precipitate which forms is removed by filtration and washed well with ether. Yield B2%, MP114°C to 116°C. Recrystallization from isopropanol gives purified 3-amino-5-(N-morpholinyl)-methyl-2-oxazolidone, MP 120°C as the intermediate. [Pg.707]

Propiolaldehyde diethyl acetal has found numerous synthetic applications in the literature which may be briefly summarized. The compound has been utilized in the synthesis of unsaturated and polyunsaturated acetals and aldehydes by alkylation of metal-lated derivatives, " by Cadiot-Chodkiewicz coupling with halo acetylenes, " and by reaction with organocuprates. Syntheses of heterocyclic compounds including pyrazoles, isoxazoles, triazoles, and pyrimidines have employed this three-carbon building block. Propiolaldehyde diethyl acetal has also been put to use in the synthesis of such natural products as polyacetylenes " and steroids. ... [Pg.8]

Cyclic carbonate esters are easily prepared from 1,2- and 1,3-diols. These are commonly prepared by reaction with A.A -carbonyldiimidazole214 or by transesterification with diethyl carbonate. [Pg.267]

One such agent is prepared by NBS and peroxide bromination of ethyl 4-chiorophenylacetate (108) to give 109. This is converted by sodium hydride to the benzylic carbene, which is inserted into the double bond of ethyl acrylate to give cis-cyclopropane 110. Partial saponification cleaves the less hindered ester moiety to give 111. This is next converted to the alkoxyimide (112) on reaction with diethyl carbonate and diammonium phosphate. Stronger base (NaOEt)... [Pg.297]

Monoanions derived from nitroalkanes are more prone to alkylate on oxygen rather than on carbon in reactions with alkyl halides, as discussed in Section 5.1. Methods to circumvent O-alkylation of nitro compounds are presented in Sections 5.1 and 5.4, in which alkylation of the a.a-dianions of primary nitro compounds and radial reactions are described. Palladium-catalyzed alkylation of nitro compounds offers another useful method for C-alkylation of nitro compounds. Tsuj i and Trost have developed the carbon-carbon bond forming reactions using 7t-allyl Pd complexes. Various nucleophiles such as the anions derived from diethyl malonate or ethyl acetoacetate are employed for this transformation, as shown in Scheme 5.7. This process is now one of the most important tools for synthesis of complex compounds.6811-1 Nitro compounds can participate in palladium-catalyzed alkylation, both as alkylating agents (see Section 7.1.2) and nucleophiles. This section summarizes the C-alkylation of nitro compounds using transition metals. [Pg.138]

The presence of trialkyl phosphite 198 in the above mentioned reduction of the gem-dibromocyclopropanes 150 with dialkyl phosphonate and triethylamine alters the reaction course. Dialkyl cyclopropanephosphonates 199 are produced via reductive phosphonation [104]. Trialkyl phosphite participates in the carbon-phosphorous bond formation. It is supported by the exclusive formation of diisopropyl cyclopropylphosphonate in the phosphonation reaction with diethyl phosphonate and triisopropyl phosphite. (Scheme 74)... [Pg.138]

Synthesis of Compound I. As shown in Scheme II, 3-(thiophene-3-yl)propyl bromide can be prepared by a two-carbon homologation(2 ) of 3-thenyl bromide via reaction with diethyl malonate to form diethyl 3-thenylmalonate. This is followed by saponification, decarboxylation, reduction of acid to alcohol, (2 ) and replacement of the hydroxyl group with bromide by reacting with PBr3.(22) Compound 2 is synthesized by mono-quaternization of an excess of 4,4 -bipyridine with 3-(thiophene-3-yl)propyl bromide followed by N-methylation with CH3I. All the intermediates in Scheme II have been identified by NMR spectroscopy. 2 has been characterized by NMR and high resolution mass spectroscopy and by electrochemistry. [Pg.412]


See other pages where Diethyl carbonate, reaction with is mentioned: [Pg.517]    [Pg.785]    [Pg.47]    [Pg.149]    [Pg.386]    [Pg.199]    [Pg.107]    [Pg.156]    [Pg.150]    [Pg.184]    [Pg.25]    [Pg.144]    [Pg.1079]    [Pg.347]    [Pg.429]    [Pg.59]    [Pg.339]    [Pg.517]    [Pg.785]    [Pg.200]    [Pg.90]    [Pg.167]    [Pg.87]    [Pg.124]    [Pg.886]   


SEARCH



Carbonate reactions with

Diethyl carbonate

Methoxybutenyne reaction with diethyl carbonate

Reaction with carbon

© 2024 chempedia.info