Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dienes carbon-centered radicals

In recent years, interest in radical-based transformations of allenes has been renewed for two major reasons. First, a number of useful intramolecular additions of carbon-centered radicals to 1,2-dienes have been reported, which allowed syntheses of complex natural product-derived target molecules to be accomplished in instances where other methods have failed to provide similar selectivities. Further, a large body of kinetic and thermochemical data has become accessible from results of experimental and theoretical investigations in order to predict selectivities in addition reactions to allenes more precisely. Such contributions originated predominantly from (i) studies directed towards an understanding of the incineration process,... [Pg.701]

In the series of hydroxycyclohexadienylperoxyl radicals, one encounters the competition between the H02-/02- elimination leading to phenol [reactions (9) and (14)/(15)] and fragmentation of the ring (Pan et al. 1993). That latter has been attributed to an intramolecular addition of the peroxyl radical function to a diene double bond [reaction (24)]. This reaction is reversible [reaction (-24)], but when 02 adds to the newly created carbon-centered radical the endoperoxidic function is locked in [reaction (25)]. In analogy to reaction (24), the first step of the trichloromethylperoxyl-radical-induced oxidation of indole is its addition to the indole C(2)-C(3) double bond (Shen et al. 1989). [Pg.169]

Key to the success of this sequence is undoubtedly the ease of formation of the bis-allylic carbon-centered radical 3 (BDE of C-H is about 76 kcal/mol) from diene... [Pg.955]

Oxidation to CO of biodiesel results in the formation of hydroperoxides. The formation of a hydroperoxide follows a well-known peroxidation chain mechanism. Oxidative lipid modifications occur through lipid peroxidation mechanisms in which free radicals and reactive oxygen species abstract a methylene hydrogen atom from polyunsaturated fatty acids, producing a carbon-centered lipid radical. Spontaneous rearrangement of the 1,4-pentadiene yields a conjugated diene, which reacts with molecular oxygen to form a lipid peroxyl radical. [Pg.74]

Desaturation of alkyl groups. This novel reaction, which converts a saturated alkyl compound into a substituted alkene and is catalyzed by cytochromes P-450, has been described for the antiepileptic drug, valproic acid (VPA) (2-n-propyl-4-pentanoic acid) (Fig. 4.29). The mechanism proposed involves formation of a carbon-centered free radical, which may form either a hydroxy la ted product (alcohol) or dehydrogenate to the unsaturated compound. The cytochrome P-450-mediated metabolism yields 4-ene-VPA (2-n-propyl-4pentenoic acid), which is oxidized by the mitochondrial p-oxidation enzymes to 2,4-diene-VPA (2-n-propyl-2, 4-pentadienoic acid). This metabolite or its Co A ester irreversibly inhibits enzymes of the p-oxidation system, destroys cytochrome P-450, and may be involved in the hepatotoxicity of the drug. Further metabolism may occur to give 3-keto-4-ene-VPA (2-n-propyl-3-oxo-4-pentenoic acid), which inhibits the enzyme 3-ketoacyl-CoA thiolase, the terminal enzyme of the fatty acid oxidation system. [Pg.92]

Allyl radicals substituted at only one of the terminal carbon centers usually react predominantly at the unsubstituted terminus in reactions with nonradicals. This has been shown in reactions of simple dienes such as butadiene, which react with hydrogen bromide, tetrachloromethane or bromotrichloromethane to yield overall 1,4-addition products . The reaction of allyl radicals with hydrogen donors such as thiols or tin hydrides has been investigated and reviewed repeatedly. In most cases, the thermodynamically more favorable product is formed predominantly. This accords with formation of either the higher substituted alkene or the formation of conjugated tt-systems. Not in all cases, however, is the formation of the thermodynamically more favorable product identical to overall 1,4-addition to the diene. In those cases in which allyl radicals are formed through reaction of dienes with tin hydrides or thiols, the... [Pg.634]

Mechanisms depending on carbanionic propagating centers for these polymerizations are indicated by various pieces of evidence (1) the nature of the catalysts which are effective, (2) the intense colors that often develop during polymerization, (3) the prompt cessation of sodium-catalyzed polymerization upon the introduction of carbon dioxide and the failure of -butylcatechol to cause inhibition, (4) the conversion of triphenylmethane to triphenylmethylsodium in the zone of polymerization of isoprene under the influence of metallic sodium, (5) the structures of the diene polymers obtained (see Chap. VI), which differ. both from the radical and the cationic polymers, and (6)... [Pg.224]

In addition to cationic cyclizations, other conditions for the cyclization of polyenes and of ene-ynes to steroids have been investigated. Oxidative free-radical cyclizations of polyenes produce steroid nuclei with exquisite stereocontrol. For example, treatment of (259) and (260) with Mn(III) and Cu(II) afford the D-homo-5a-androstane-3-ones (261) and (262), respectively, in approximately 30% yield. In this cyclization, seven asymmetric centers are established in one chemical step (226,227). Another intramolecular cyclization reaction of iodo-ene poly-ynes was reported using a carbopaUadation cascade terminated by carbonylation. This carbometalation—carbonylation cascade using CO at 111 kPa (1.1 atm) at 70°C converted an acycHc iodo—tetra-yne (263) to a D-homo-steroid nucleus (264) [162878-44-6] in approximately 80% yield in one chemical step (228). Intramolecular aimulations between two alkynes and a chromium or tungsten carbene complex have been examined for the formation of a variety of different fiised-ring systems. A tandem Diels-Alder—two-alkyne annulation of a triynylcarbene complex demonstrated the feasibiHty of this strategy for the synthesis of steroid nuclei. Complex (265) was prepared in two steps from commercially available materials. Treatment of (265) with Danishefsky s diene in CH CN at room temperature under an atmosphere of carbon monoxide (101.3 kPa = 1 atm), followed by heating the reaction mixture to 110°C, provided (266) in 62% yield (TBS = tert — butyldimethylsilyl). In a second experiment, a sequential Diels-Alder—two-alkyne annulation of triynylcarbene complex (267) afforded a nonaromatic steroid nucleus (269) in approximately 50% overall yield from the acycHc precursors (229). [Pg.442]


See other pages where Dienes carbon-centered radicals is mentioned: [Pg.218]    [Pg.221]    [Pg.225]    [Pg.945]    [Pg.218]    [Pg.221]    [Pg.225]    [Pg.945]    [Pg.644]    [Pg.118]    [Pg.1243]    [Pg.1252]    [Pg.4]    [Pg.631]    [Pg.634]    [Pg.933]    [Pg.125]    [Pg.691]    [Pg.631]    [Pg.2217]    [Pg.442]    [Pg.22]    [Pg.634]    [Pg.524]    [Pg.25]    [Pg.634]    [Pg.25]    [Pg.926]    [Pg.442]    [Pg.448]    [Pg.524]    [Pg.208]    [Pg.738]    [Pg.595]   
See also in sourсe #XX -- [ Pg.789 ]

See also in sourсe #XX -- [ Pg.4 , Pg.765 ]

See also in sourсe #XX -- [ Pg.4 , Pg.765 ]




SEARCH



Carbon centers

Carbon radicals

Carbon-centered

Carbonate radical

Carbonates, diene

Centered Radicals

Radical centers

© 2024 chempedia.info