Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diene/aldehyde cyclization

Diene/aldehyde cyclization. Ene-type reaction is induced by Ni(cod)2-Pli3P in THE at room temperature. [Pg.35]

Later, the groups of Sakai and of Tanaka and Suemune, respectively, extended the scope of the enantioselective cyclizations by employing desymmetrization of the aldehyde substrates bearing two identical terminal olefin moieties, and the cyclopentanone products with two vicinal stereo-centers, 8 or 9, could be obtained using a catalytic amount of the cationic Rh complex (5 mol%) (Table 8.2). However, if neutral Rh catalysts were employed, a high catalyst loading at 50 mol% was needed (entries 1, 2). Tanaka, Suemune, and co orkers also developed the kinetic resolution of unsymmetrical racemic diene-aldehyde 10 via a Rh-catalyzed asymmetric hydroacylation reaction (Scheme 8.5). The cyclization product could be obtained in >95% ee. ... [Pg.360]

Pd-cataly2ed reactions of butadiene are different from those catalyzed by other transition metal complexes. Unlike Ni(0) catalysts, neither the well known cyclodimerization nor cyclotrimerization to form COD or CDT[1,2] takes place with Pd(0) catalysts. Pd(0) complexes catalyze two important reactions of conjugated dienes[3,4]. The first type is linear dimerization. The most characteristic and useful reaction of butadiene catalyzed by Pd(0) is dimerization with incorporation of nucleophiles. The bis-rr-allylpalladium complex 3 is believed to be an intermediate of 1,3,7-octatriene (7j and telomers 5 and 6[5,6]. The complex 3 is the resonance form of 2,5-divinylpalladacyclopentane (1) and pallada-3,7-cyclononadiene (2) formed by the oxidative cyclization of butadiene. The second reaction characteristic of Pd is the co-cyclization of butadiene with C = 0 bonds of aldehydes[7-9] and CO jlO] and C = N bonds of Schiff bases[ll] and isocyanate[12] to form the six-membered heterocyclic compounds 9 with two vinyl groups. The cyclization is explained by the insertion of these unsaturated bonds into the complex 1 to generate 8 and its reductive elimination to give 9. [Pg.423]

A series of chiral binaphthyl ligands in combination with AlMe3 has been used for the cycloaddition reaction of enamide aldehydes with Danishefsky s diene for the enantioselective synthesis of a chiral amino dihydroxy molecule [15]. The cycloaddition reaction, which was found to proceed via a Mukaiyama aldol condensation followed by a cyclization, gives the cycloaddition product in up to 60% yield and 78% ee. [Pg.159]

In the presence of an imidazolium salt and a base, oxidative cyclization of a Ni(0) species upon the diene and an aldehyde takes place first and forms an oxanickellacycle 25, which equilibrates with a seven-membered oxanickella-cycle 26, naturally possessing a cis double bond. cr-Bond metathesis through 26 with hydrosilane affords (Z)-allylsilane (Z)-23. The role of NHC ligand (AT-heterocyclic carbene, generated by H+ elimination from imidazolium C2H by a base) is not clear at present a Ni(0)-NHC complex is believed to effectively produce 26. [Pg.189]

A rationale for the cz s-selective cyclization for the intramolecular homoal-lylation of oo-dienyl aldehyde 64 is illustrated in Scheme 16. The scenario is essentially the same as the one proposed for the intermolecular reaction, and a Ni(0) species undergoes oxidative addition upon the diene and the aldehyde moieties through a conformation placing the aldehyde substituent and the diene anti to each other. An intermediate 66 undergoes (>-II elimination and czs-reductive elimination of the thus-formed Ni - H complex to produce 65. [Pg.208]

It should be noted that the Grob fragmentation reaction and the reductive cyclization (homoallylation) discussed in this section involve the same oxanickellacyclopentane 66 as a common intermediate (Scheme 17). The reversibility of these C - C bond cleavage reaction and C - C bond formation reaction is also supported by the isolation and characterization (by X-ray analysis) of an oxanickellacyclopentane-like 66 (without a tether), which is prepared from a stoichiometric amount of Ni(cod)2, a diene, an aldehyde, and a monodentate phosphine ligand [41]. [Pg.209]

The Coleman synthesis commenced with a [4+2] cyclization to achieve naphthalene 30 (Scheme 7.4). This convergent process required four steps to obtain diene 27 and five steps to attain dieneophile 28. Three further functional group transformations were required to complete aldehyde 31. This novel process realized the installation of all the carbon and oxygen substituents in a regioselective manner. [Pg.163]

For example, a dienyl aldehyde reductively cyclizes in the presence of an Ni(0)/PPh3 complex and triethylsilane to give homoallylic cyclopropentanol with high regio- and stereoselectivities, while bishomoallylic cyclopropentanol is obtained as major product under the conditions using stoichiometric Ni(0)-diene complexes (Scheme 85). [Pg.456]

Enantioselective catalysts have been developed for cyclization of dienyl aldehydes and coupling of aldehydes with alkynes (Equations (74) and (75)). For reactions with dienes see Refs 433 and 433a, and for reactions with alkynes see Refs 433b I33e. Chiral monodentate phosphines have proved to be effective. [Pg.459]

Recently, four-component coupling reactions of aldehydes, alkynes, dienes, and dimethylzinc catalyzed by a nickel complex have been reported (Equation (78)).435 Similarly, l,c< -dienynes react with carbonyl compounds and dimethylzinc in the presence of an Ni catalyst to afford the corresponding cyclized products. [Pg.460]

The Alder-ene cyclization of allylic silyl ethers represents a clever use of cycloisomerization chemistry, as the enol ether products can be easily unmasked to yield aldehydes. Palladium-catalyzed cycloisomerization of 1,6- and 1,7-enynes containing an allylic oxygen most often gives rise to 1,3-dienes (see Section 10.12.4.1). However, enynes of type 63 underwent facile Alder-ene cyclization to the corresponding five- or six-membered rings (Equation (40)) using both [CpRu(MeCN)3]PF6 41 and the Cp analog ([Cp Ru(MeCN)3]PF6, 64).53... [Pg.573]

Zr-catalyzed enantio-selective intramolecular diene cyclizations with allylic alcohol and ether substrates afford carbocycles bearing quaternary carbon stereogenic centers the unexpected formation of the aldehyde product 19 is noteworthy. [Pg.187]

The intramolecular cyclization of l,2-dien-7-ynes and l,2-dien-6-ynes regiospecifically affords the corresponding titanacycles, which react with protons, carbon monoxide, aldehydes, or imines to give single products, as shown in Eqs. 9.56 and 9.57 [102], As the formation of titanacycles and their subsequent reaction with externally added reagents such as carbon monoxide (Eq. 9.56) or an aldehyde (or imine) (Eq. 9.57) proceeds with excellent chirality transfer, this represents a new method for synthesizing optically active cyclopentane derivatives from optically active allenes [102]. [Pg.345]

An unusual palladium-catalyzed arylative fragmenation process of /3-hydroxy-substituted allenes was observed by Oh et al. [59]. Compounds such as 8 reacted with aryl bromides and iodides in the presence of Pd(PPh3)4 and K2C03 as base to give 1,3-dienes 120 and aldehydes 121 as second fragment (Scheme 14.28). The initially expected cyclization product, dihydropyran 122 (Scheme 14.29), was usually not formed. [Pg.866]

The proposed mechanism involves the usual oxidative addition of the aryl halide to the Pd(0) complex affording a Pd(II) intermediate (Ar-Pd-Hal), subsequent coordination of allene 8 and migratory insertion of the allene into the Pd-C bond to form the jt-allylpalladium(II) species 123. A remarkable C-C bond cleavage of 123 leads by decarbopalladation to 1,3-diene 120 and a-hydroxyalkylpalladium species 124. /8-H elimination of 124 affords aldehyde 121 and the H-Pd-Hal species, which delivers Pd(0) again by reaction with base (Scheme 14.29). The originally expected cyclization of intermediate 123 by employment of the internal nucleophilic hydroxyl group to form a pyran derivative 122 was observed in a single case only (Scheme 14.29). [Pg.867]

Ti-mediated cyclization of a l,2-dien-6-yne generates a new allylic titanacycle, which reacts with an aldehyde to give a homoallylic alcohol with high diastereoselec-tivity (Scheme 16.72) [78]. [Pg.955]

It has been shown22 that the reaction of the diene 4 with aldehydes RCHO in the presence of a catalyst prepared from (R)-BHMOL (33) and Ti(OPr-i)3, which affords the dihydro-y-pyrones 35 in good yields and high ee, proceeds by a two-step sequence via the open-chain adducts 34, which cyclize to the products on treatment with trifluoroacetic acid (equation 20). [Pg.489]

Thermolysis of the functionally substituted 1,2,6-trienes 28 and 31a-d leads by Cope rearrangements to dienes 29, 30 and 32a-d (equations 9 and 10), respectively26. The reactions of aldehyde 28 occur at a relatively high temperature (>170 °C) to furnish both 29 and 30. Product 29 can be cyclized to 30 by heating. The similar thermolysis of the Shiff base 33 obtained from aldehyde 28 proceeds via two steps to afford the separable analogous products 34 and 35 (equation ll)27. [Pg.744]

Furo[2,3- ]pyridines are generated in a cyano [4-1-2] reaction that uses tungsten alkynols and aldehydes which cyclize to 1,3-dienes prior to reaction with nitriles (Scheme 9) <1998JA4520>. The reaction, which is activated by photolysis or with Me3N0-H20, works with unactivated nitriles in both intramolecular and intermolecular reactions to give moderate to good yields of product. [Pg.288]

Aldehydes constitute useful electrophilic partners in such nickel-catalyzed reactions because the condensation between alkynes, aldehydes and diorganozinc compounds can afford stereodefined cyclic or acyclic ally lie alcohols67-69, as illustrated by the stereoselective cyclization of 111 to the corresponding 3-hydroxypyrrolidine (equation 46). Allenes or 1,3-dienes instead of alkynes also lead to similar reactivity70. [Pg.888]


See other pages where Diene/aldehyde cyclization is mentioned: [Pg.726]    [Pg.723]    [Pg.726]    [Pg.723]    [Pg.11]    [Pg.244]    [Pg.11]    [Pg.177]    [Pg.279]    [Pg.1037]    [Pg.198]    [Pg.200]    [Pg.599]    [Pg.522]    [Pg.524]    [Pg.737]    [Pg.186]    [Pg.22]    [Pg.36]    [Pg.6]    [Pg.34]    [Pg.240]    [Pg.28]    [Pg.450]    [Pg.99]    [Pg.397]   
See also in sourсe #XX -- [ Pg.35 ]




SEARCH



Aldehydes 1.3- dienes

Aldehydes cyclization

Diene cyclization

Diene-Aldehyde Reductive Cyclizations

Dienes cyclization

© 2024 chempedia.info