Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels 1,3-dipolar cycloadditions

Apart from the thoroughly studied aqueous Diels-Alder reaction, a limited number of other transformations have been reported to benefit considerably from the use of water. These include the aldol condensation , the benzoin condensation , the Baylis-Hillman reaction (tertiary-amine catalysed coupling of aldehydes with acrylic acid derivatives) and pericyclic reactions like the 1,3-dipolar cycloaddition and the Qaisen rearrangement (see below). These reactions have one thing in common a negative volume of activation. This observation has tempted many authors to propose hydrophobic effects as primary cause of ftie observed rate enhancements. [Pg.27]

Mechanistic investigations have focused on the two pericyclic reactions, probably as a consequence of the close mechanistic relation to the so successful aqueous Diels-Alder reaction. A kinetic inquest into the effect of water on several 1,3-dipolar cycloadditions has been performed by Steiner , van... [Pg.27]

The distinction between these two classes of reactions is semantic for the five-membered rings Diels-Alder reaction at the F/B positions in (269) (four atom fragment) is equivalent to 1,3-dipolar cycloaddition in (270) across the three-atom fragment, both providing the 47t-electron component of the cycloaddition. Oxazoles and isoxazoles and their polyaza analogues show reduced aromatic character and will undergo many cycloadditions, whereas fully nitrogenous azoles such as pyrazoles and imidazoles do not, except in certain isolated cases. [Pg.75]

Just as in the Diels-Alder reaction, 1,4-dipolar cycloadditions lead to six-membered rings. Their principal use in five-membered heterocycles is for ring annulations giving [5,6] ring-fused systems. [Pg.151]

There is a large elass of reactions known as 1,3-dipolar cycloaddition reactions that are analogous to the Diels-Alder reaction in that they are coneerted [4jc -I- 2jc] eyeloaddi-tions. ° These reactions can be represented as in the following diagram. The entity a—b—c is called the 1,3-dipolar molecule and d—e is the dipolarophile. [Pg.646]

The stereochemistry of the 1,3-dipolar cycloaddition reaction is analogous to that of the Diels-Alder reaction and is a stereospecific syn addition. Diazomethane, for example, adds stereospecifically to the diesters 43 and 44 to yield the pyrazolines 45 and 46, respectively. [Pg.646]

When both the 1,3-dipoIe and the dipolarophile are unsymmetrical, there are two possible orientations for addition. Both steric and electronic factors play a role in determining the regioselectivity of the addition. The most generally satisfactory interpretation of the regiochemistry of dipolar cycloadditions is based on frontier orbital concepts. As with the Diels-Alder reaction, the most favorable orientation is that which involves complementary interaction between the frontier orbitals of the 1,3-dipole and the dipolarophile. Although most dipolar cycloadditions are of the type in which the LUMO of the dipolarophile interacts with the HOMO of the 1,3-dipole, there are a significant number of systems in which the relationship is reversed. There are also some in which the two possible HOMO-LUMO interactions are of comparable magnitude. [Pg.647]

Dipolar cycloaddUions. Interest in 1,3-dipolar cycloadditions increased dramatically during the past 20 years, largely because of the pioneering studies of Huisgen [7, 2] The versatility of this class of pericychc reactions in the synthesis of five-membered-ring heterocyclic compounds is comparable with that of the Diels-Alder reaction in the synthesis of six-membered-ring carbocyclic systems (equation 1)... [Pg.797]

Fluoroallene also undergoes reaction exclusively at the C(2)-C(3) it bond and exhibits a slight syn selectivity in its Diels-Alder reactions [25, 26, 93] (equation 80), much less than that observed in its 1,3-dipolar cycloadditions... [Pg.825]

Gothelf presents in Chapter 6 a comprehensive review of metal-catalyzed 1,3-di-polar cycloaddition reactions, with the focus on the properties of different chiral Lewis-acid complexes. The general properties of a chiral aqua complex are presented in the next chapter by Kanamasa, who focuses on 1,3-dipolar cycloaddition reactions of nitrones, nitronates, and diazo compounds. The use of this complex as a highly efficient catalyst for carbo-Diels-Alder reactions and conjugate additions is also described. [Pg.3]

In the 1,3-dipolar cycloaddition reactions of especially allyl anion type 1,3-dipoles with alkenes the formation of diastereomers has to be considered. In reactions of nitrones with a terminal alkene the nitrone can approach the alkene in an endo or an exo fashion giving rise to two different diastereomers. The nomenclature endo and exo is well known from the Diels-Alder reaction [3]. The endo isomer arises from the reaction in which the nitrogen atom of the dipole points in the same direction as the substituent of the alkene as outlined in Scheme 6.7. However, compared with the Diels-Alder reaction in which the endo transition state is stabilized by secondary 7t-orbital interactions, the actual interaction of the N-nitrone p -orbital with a vicinal p -orbital on the alkene, and thus the stabilization, is small [25]. The endojexo selectivity in the 1,3-dipolar cycloaddition reaction is therefore primarily controlled by the structure of the substrates or by a catalyst. [Pg.217]

Scheeren et al. reported the first enantioselective metal-catalyzed 1,3-dipolar cycloaddition reaction of nitrones with alkenes in 1994 [26]. Their approach involved C,N-diphenylnitrone la and ketene acetals 2, in the presence of the amino acid-derived oxazaborolidinones 3 as the catalyst (Scheme 6.8). This type of boron catalyst has been used successfully for asymmetric Diels-Alder reactions [27, 28]. In this reaction the nitrone is activated, according to the inverse electron-demand, for a 1,3-dipolar cycloaddition with the electron-rich alkene. The reaction is thus controlled by the LUMO inone-HOMOaikene interaction. They found that coordination of the nitrone to the boron Lewis acid strongly accelerated the 1,3-dipolar cycloaddition reaction with ketene acetals. The reactions of la with 2a,b, catalyzed by 20 mol% of oxazaborolidinones such as 3a,b were carried out at -78 °C. In some reactions fair enantioselectivities were induced by the catalysts, thus, 4a was obtained with an optical purity of 74% ee, however, in a low yield. The reaction involving 2b gave the C-3, C-4-cis isomer 4b as the only diastereomer of the product with 62% ee. [Pg.218]

In most TiCl2-TADDOLate-catalyzed Diels-Alder and 1,3-dipolar cycloaddition reactions oxazolidinone derivatives are applied as auxiliaries for the alkenoyl moiety in order to obtain the favorable bidentate coordination of the substrate to the catalyst... [Pg.226]

This chapter will try to cover some developments in the theoretical understanding of metal-catalyzed cycloaddition reactions. The reactions to be discussed below are related to the other chapters in this book in an attempt to obtain a coherent picture of the metal-catalyzed reactions discussed. The intention with this chapter is not to go into details of the theoretical methods used for the calculations - the reader must go to the original literature to obtain this information. The examples chosen are related to the different chapters, i.e. this chapter will cover carbo-Diels-Alder, hetero-Diels-Alder and 1,3-dipolar cycloaddition reactions. Each section will start with a description of the reactions considered, based on the frontier molecular orbital approach, in an attempt for the reader to understand the basis molecular orbital concepts for the reaction. [Pg.301]

The theoretical investigations of Lewis acid-catalyzed 1,3-dipolar cycloaddition reactions are also very limited and only papers dealing with cycloaddition reactions of nitrones with alkenes have been investigated. The Influence of the Lewis acid catalyst on these reactions are very similar to what has been calculated for the carbo- and hetero-Diels-Alder reactions. The FMOs are perturbed by the coordination of the substrate to the Lewis acid giving a more favorable reaction with a lower transition-state energy. Furthermore, a more asynchronous transition-structure for the cycloaddition step, compared to the uncatalyzed reaction, has also been found for this class of reactions. [Pg.326]

Huisgen has reported in 1963 about a systematic treatment of the 1,3-dipolar cycloaddition reaction as a general principle for the construction of five-membered heterocycles. This reaction is the addition of a 1,3-dipolar species 1 to a multiple bond, e. g. a double bond 2 the resulting product is a heterocyclic compound 3. The 1,3-dipolar species can consist of carbon, nitrogen and oxygen atoms (seldom sulfur) in various combinations, and has four non-dienic r-electrons. The 1,3-dipolar cycloaddition is thus An +2n cycloaddition reaction, as is the Diels-Alder reaction. [Pg.74]

Mechanistically the 1,3-dipolar cycloaddition reaction very likely is a concerted one-step process via a cyclic transition state. The transition state is less symmetric and more polar as for a Diels-Alder reaction however the symmetry of the frontier orbitals is similar. In order to describe the bonding of the 1,3-dipolar compound, e.g. diazomethane 4, several Lewis structures can be drawn that are resonance structures ... [Pg.74]

An interpretation based on frontier molecular orbital theory of the regiochemistry of Diels Alder and 1,3-dipolar cycloaddition reactions of the triazepine 3 is available.343 2,4,6-Trimethyl-benzonitrile oxide, for example, yields initially the adduct 6.344... [Pg.458]

Scheme 4 Access to various a,/ -unsaturated carbene complexes from alkynylcarbene complexes 23. A 1,3-Dipolar cycloaddition. B Diels-Alder reaction. C Ene reaction. D [2+2] Cycloaddition. E Michael-type addition followed by cyclization. F Michael-type additions... Scheme 4 Access to various a,/ -unsaturated carbene complexes from alkynylcarbene complexes 23. A 1,3-Dipolar cycloaddition. B Diels-Alder reaction. C Ene reaction. D [2+2] Cycloaddition. E Michael-type addition followed by cyclization. F Michael-type additions...
Keywords Diels-Alder reactions, dipolar cycloadditions, electrocyclic reactions, ene reactions, pericyclic reactions, sigmatropic rearrangements... [Pg.308]

In another paper, the same authors investigated the 1,3-dipolar cycloaddition on 2-(lH)-pyrazine scaffolds 72 and electron-rich azides, using Cu(0) and CUSO4 as pre-catalysts. To demonstrate the versatility of this approach, they reported the generation of different templates (73 in Scheme 25) as an application of cUck chemistry . They also investigated the Diels-Alder reaction of the so obtained triazoles with dimethyl acetylenedicarboxylate (DMAD), under microwave irradiation. The latter reaction allowed obtaining various pyridinones in good yields (74 and 75 in Scheme 25) [57]. [Pg.228]

Perhaps the most characteristic property of the carbon-carbon double bond is its ability readily to undergo addition reactions with a wide range of reagent types. It will be useful to consider addition reactions in terms of several categories (a) electrophilic additions (b) nucleophilic additions (c) radical additions (d) carbene additions (e) Diels-Alder cycloadditions and (f) 1,3-dipolar additions. [Pg.108]

The nature of the reagent in 1,3-dipolar cycloaddition is such that almost all such reagents are not symmetric. This fact obviates the use of the mechanistic test described above for the Diels-Alder reaction. [Pg.132]


See other pages where Diels 1,3-dipolar cycloadditions is mentioned: [Pg.2]    [Pg.439]    [Pg.40]    [Pg.75]    [Pg.247]    [Pg.530]    [Pg.774]    [Pg.91]    [Pg.43]    [Pg.817]    [Pg.927]    [Pg.130]    [Pg.19]    [Pg.212]    [Pg.230]    [Pg.311]    [Pg.76]    [Pg.1061]    [Pg.1]    [Pg.216]    [Pg.259]    [Pg.2]    [Pg.150]   


SEARCH



Diels cycloaddition

© 2024 chempedia.info