Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reactions bromide

In this section the influence of micelles of cetyltrimethylammonium bromide (CTAB), sodium dodecylsulfate (SDS) and dodecyl heptaoxyethylene ether (C12E7) on the Diels-Alder reaction of 5.1a-g with 5.2 in the absence of Lewis-add catalysts is described (see Scheme 5.1). Note that the dienophiles can be divided into nonionic (5.1a-e), anionic (5.If) and cationic (5.1g) species. A comparison of the effect of nonionic (C12E7), anionic (SDS) and cationic (CTAB) micelles on the rates of their reaction with 5.2 will assess of the importance of electrostatic interactions in micellar catalysis or inhibition. [Pg.133]

The novel intramolecular reaction of the alkenyl bromide with the terminal alkyne in 328, followed by intramolecular Diels-Alder reaction, afforded the highly strained dynemicin A structure 329 in one stepf237]. [Pg.174]

Diels-Alder reaction of 2-bromoacrolein and 5-[(ben2yloxy)meth5i]cyclopentadiene in the presence of 5 mol % of the catalyst (35) afforded the adduct (36) in 83—85% yield, 95 5 exo/endo ratio, and greater than 96 4 enantioselectivity. Treatment of the aldehyde (36) with aqueous hydroxylamine, led to oxime formation and bromide solvolysis. Tosylation and elimination to the cyanohydrin followed by basic hydrolysis gave (24). [Pg.159]

The cycloadditions of cyclopentadiene 1 and its spiro-derivatives 109 and 110 with quinones 52, 111 and 112 (Scheme 4.20), carried out in water at 30 °C in the presence of 0.5% mol. of cetyltrimethylammonium bromide (CTAB), gave the endo adduct in about 3 h with good yield [72b]. With respect to the thermal Diels-Alder reaction, the great reaction rate enhancement in micellar medium (Scheme 4.20) can be ascribed to the increased concentration of the reactants in the micellar pseudophase where they are also more ordered. [Pg.176]

The Diels-Alder reaction of methyl methacrylate with cyclopentadiene was studied [72] with solutions from three different regions of the pseudophase diagram for toluene, water and 2-propanol, in the absence and in the presence of surfactant [sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (HTAB)]. The composition of the three solutions (Table 6.11) corresponds to a W/O-fiE (A), a solution of small aggregates (B) and a normal ternary solution (C). The diastereoselectivity was practically constant in the absence and in the presence of surfactant a slight increase of endo adduct was observed in the C medium in the presence of surfactant. This suggests that the reaction probably occurs in the interphase and that the transition state has a similar environment in all three media. [Pg.282]

The natural product panepophenanthrin (6/1-170), isolated in 2002 from the fermented broth of the mushroom strain Panus radus IFO 8994 [90], is the first example of an inhibitor of the ubiquitin-activating enzyme [91]. Retrosynthetic analysis based on a biomimetic analysis led to the conjugated diene 6/1-172 by a retro-Diels-Alder reaction via the hemiacetal 6/1-171. Further disconnections of 6/1-172 produces the vinyl stannane 6/1-173 and the vinyl bromide 6/1-174 [92]. [Pg.388]

A challenge of a different kind was encountered in the internal vinylation of various vinyl triflates and bromides as depicted in Eq. (11.13) [27]. The electron-rich structures obtained from the reactions were of interest for further use in Diels-Alder reactions, but the risk of degrading the products in the hot reaction medium posed a problem and a prudent choice of energy input was imperative. It turned out that single-mode microwave heating for 5 min at the very low power of 5 W was sufficient to yield 64% of the product with excellent regioselectivity. Measurements with a fluor-optic probe revealed an unexpectedly high temperature of 76 °C [27]. [Pg.386]

Baldwin and coworkers82 studied the Diels-Alder reactions between dihydropyri-dinium ions and diene 77 with the aim to synthesize functionalized hydroisoquinolines. The reaction of diene 77 with dihydropyridinium ion 79, which was prepared in situ by treating 78 with zinc bromide, afforded 80. After acidic work-up, a mixture of methoxyke-tone 81 and enone 82 was obtained (equation 25). The reaction proceeded with complete exo selectivity. Without the addition of zinc bromide, no Diels-Alder reaction was observed. [Pg.350]

Methyl 2-bromo-2-cyclopropylideneacetate (11a) has never been tested in these reactions, but has been used as a starting material for the stepwise construction of 1,6-heptadienes with methylenecyclopropane units for intramolecular Heck reactions. Thus, bromo ester 11a, after reduction, subsequent conversion of the resulting alcohol to the bromide and coupling with enolates of substituted malonates, was transformed into dienes of the type 254 (Scheme 73) - versatile synthetic blocks for the preparation of functionally substituted spirocyclopropanated bicyclo[4.3.0]nonenes 255a-d by a domino Heck-Diels-Alder reaction [122a]. [Pg.213]

Miki and Hachiken reported a total synthesis of murrayaquinone A (107) using 4-benzyl-l-ferf-butyldimethylsiloxy-4fT-furo[3,4-f>]indole (854) as an indolo-2,3-quinodimethane equivalent for the Diels-Alder reaction with methyl acrylate (624). 4-Benzyl-3,4-dihydro-lfT-furo[3,4-f>]indol-l-one (853), the precursor for the 4H-furo[3,4-f>]indole (854), was prepared in five steps and 30% overall yield starting from dimethyl indole-2,3-dicarboxylate (851). Alkaline hydrolysis of 851 followed by N-benzylation of the dicarboxylic acid with benzyl bromide and sodium hydride in DMF, and treatment of the corresponding l-benzylindole-2,3-dicarboxylic acid with trifluoroacetic anhydride (TFAA) gave the anhydride 852. Reduction of 852 with sodium borohydride, followed by lactonization of the intermediate 2-hydroxy-methylindole-3-carboxylic acid with l-methyl-2-chloropyridinium iodide, led to the lactone 853. The lactone 853 was transformed to 4-benzyl-l-ferf-butyldimethylsiloxy-4H-furo[3,4- 7]indole 854 by a base-induced silylation. Without isolation, the... [Pg.258]

Electrophilic substitution hexahydrophenanthrenes. Electrophilic attack could occur at three sites in 1, but no products of a-substitution have been reported. Benzyl bromide reacts exclusively by y-attack. Aldehydes and ketones react usually by e- and/or y-attack, but with variahlc regioselectivity. c-Attack is useful because products can be obtained that undergo an intramolecular Diels-Alder reaction. An example is the synthesis of the two isomeric hexahydrophenanthrenes (3, equation... [Pg.437]

Addition of a cyanohydrin acetal anion to [(benzene)Cr(CO)3] followed by reaction with allyl bromide produces the cyclohexadiene derivative (73) in 94% yield, which undergoes a Diels-Alder reaction rapidly to give a tricyclic framework (74). After quenching with methyl iodide and disassembling of the cyanohydrin group, the diketone (75) is obtained in 50% yield overall (equation 51).125 These products are obviously interesting as potential intermediates for synthesis. [Pg.546]

The cyclohexene 121, which was readily accessible from the Diels-Alder reaction of methyl hexa-3,5-dienoate and 3,4-methylenedioxy-(3-nitrostyrene (108), served as the starting point for another formal total synthesis of ( )-lycorine (1) (Scheme 11) (113). In the event dissolving metal reduction of 121 with zinc followed by reduction of the intermediate cyclic hydroxamic acid with lithium diethoxyaluminum hydride provided the secondary amine 122. Transformation of 122 to the tetracyclic lactam 123 was achieved by sequential treatment with ethyl chloroformate and Bischler-Napieralski cyclization of the resulting carbamate with phosphorus oxychloride. Since attempts to effect cleanly the direct allylic oxidation of 123 to provide an intermediate suitable for subsequent elaboration to ( )-lycorine (1) were unsuccessful, a stepwise protocol was devised. Namely, addition of phenylselenyl bromide to 123 in acetic acid followed by hydrolysis of the intermediate acetates gave a mixture of two hydroxy se-lenides. Oxidative elimination of phenylselenous acid from the minor product afforded the allylic alcohol 124, whereas the major hydroxy selenide was resistant to oxidation and elimination. When 124 was treated with a small amount of acetic anhydride and sulfuric acid in acetic acid, the main product was the rearranged acetate 67, which had been previously converted to ( )-lycorine (108). [Pg.279]

In order to introduce functionality at key positions, an intramolecular Diels-Alder reaction with furan as the diene component was planned. Suzuki coupling of the previously mentioned 105 with furan-3-boronic acid 106 gave compound 107, which was N-tosylated to 108. Construction of the dienophile portion was performed as in the previous case, by addition of vinylmagne-sium bromide to give 109, followed by MnC>2 oxidation to give the cyclization precursor, which was immediately heated at 120 °C in toluene and afforded compound 110, which incorporates an oxygen atom at both the ketone and vinyl chloride positions of welwistatin (Scheme 24). [Pg.86]


See other pages where Diels-Alder reactions bromide is mentioned: [Pg.178]    [Pg.463]    [Pg.272]    [Pg.88]    [Pg.214]    [Pg.245]    [Pg.385]    [Pg.142]    [Pg.356]    [Pg.155]    [Pg.325]    [Pg.162]    [Pg.160]    [Pg.519]    [Pg.3]    [Pg.25]    [Pg.585]    [Pg.450]    [Pg.450]    [Pg.503]    [Pg.131]    [Pg.627]    [Pg.94]    [Pg.6]    [Pg.1328]    [Pg.90]   
See also in sourсe #XX -- [ Pg.450 ]

See also in sourсe #XX -- [ Pg.450 ]

See also in sourсe #XX -- [ Pg.450 ]




SEARCH



Bromide reaction

Magnesium bromide Diels-Alder reaction

Magnesium bromide Diels-Alder reaction catalysts

© 2024 chempedia.info