Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reaction aromatic

Aromaticity is one of the fundamental principles of organic chemistry, used to predict products from chemical reactions based on the stability of the possible products, as well as to rationalize the stability of transition states, such as the transition state of the Diels Alder reaction (/). Aromatic species have An + 2n electrons in a cyclic system that allows complete delocalization of the electrons. [Pg.223]

Modified clays (e.g. montmorilonite K-10) as mild Lewis acid catalysts in Knoevenagel, Michael, Diels-Alder reactions, aromatic chlorination and nitration. [Pg.213]

TRANSITION-METAL-MEDIATED DIELS-ALDER REACTION/AROMATIZATION SEQUENCE... [Pg.342]

The rate of the Nf -catalysed Diels-Alder reaction is barely sensitive to the presence of ligands. Apparently no significant effect due to -back donation is observed, in contrast to the effect of aromatic diamines on the metal-ion catalysed decarboxylation reaction of oxaloacetate (see Section 3.1.1). [Pg.85]

Also the arene-arene interactions, as encountered in Chapter 3, are partly due to hydrophobic effects, which can be ranked among enforced hydrophobic interactions. Simultaneous coordination of an aromatic oc amino acid ligand and the dienophile to the central copper(II) ion offers the possibility of a reduction of the number of water molecules involved in hydrophobic hydration, leading to a strengthening of the arene-arene interaction. Hence, hydrophobic effects can have a beneficial influence on the enantioselectivity of organic reactions. This effect is anticipated to extend well beyond the Diels-Alder reaction. [Pg.169]

Under different conditions [PdfOAcj2, K2CO3, flu4NBr, NMP], the 1 3 coupling product 86 with 4-aryl-9,10-dihydrophenanthrene units was obtained. The product 86 was transformed into a variety of polycyclic aromatic compounds such as 87 and 88[83], The polycyclic heteroarene-annulated cyclopen-tadicnc 90 is prepared by the coupling of 3-iodopyridine and dicyclopentadiene (89), followed by retro-Diels Alder reaction on thermolysis[84]. [Pg.141]

Indoles are usually constructed from aromatic nitrogen compounds by formation of the pyrrole ring as has been the case for all of the synthetic methods discussed in the preceding chapters. Recently, methods for construction of the carbocyclic ring from pyrrole derivatives have received more attention. Scheme 8.1 illustrates some of the potential disconnections. In paths a and b, the syntheses involve construction of a mono-substituted pyrrole with a substituent at C2 or C3 which is capable of cyclization, usually by electrophilic substitution. Paths c and d involve Diels-Alder reactions of 2- or 3-vinyl-pyrroles. While such reactions lead to tetrahydro or dihydroindoles (the latter from acetylenic dienophiles) the adducts can be readily aromatized. Path e represents a category Iley cyclization based on 2 -I- 4 cycloadditions of pyrrole-2,3-quinodimcthane intermediates. [Pg.79]

The balance between aromatic and aUphatic reactivity is affected by the type of substituents on the ring. Furan functions as a diene in the Diels-Alder reaction. With maleic anhydride, furan readily forms 7-oxabicyclo [2.2.1]hept-5-ene-2,3-dicarboxyhc anhydride in excellent yield [5426-09-5] (4). [Pg.74]

In keeping with its aromatic character, pyrrole is relatively difficult to hydrogenate, it does not ordinarily serve as a diene for Diels-Alder reactions, and does not undergo typical olefin reactions. Klectrophilic substitutions are the most characteristic reactions, and pyrrole has often been compared to phenol or... [Pg.356]

Sulfur dioxide acts as a dienophile ia the Diels-Alder reaction with many dienes (253,254) and this reaction is conducted on a commercial scale with butadiene. The initial adduct, sulfolene [77-79-2] is hydrogenated to a solvent, sulfolane [126-33-0] which is useful for selective extraction of aromatic hydrocarbons from... [Pg.145]

The distinction between these two classes of reactions is semantic for the five-membered rings Diels-Alder reaction at the F/B positions in (269) (four atom fragment) is equivalent to 1,3-dipolar cycloaddition in (270) across the three-atom fragment, both providing the 47t-electron component of the cycloaddition. Oxazoles and isoxazoles and their polyaza analogues show reduced aromatic character and will undergo many cycloadditions, whereas fully nitrogenous azoles such as pyrazoles and imidazoles do not, except in certain isolated cases. [Pg.75]

Scheme 9.3. Correlation between for Retro-Diels-Alder Reaction and Resonance Stabilization of Aromatic Products... Scheme 9.3. Correlation between for Retro-Diels-Alder Reaction and Resonance Stabilization of Aromatic Products...
The selection rules for cycloaddition reactions can also be derived from consideration of the aromaticity of the transition state. The transition states for [2tc -f 2tc] and [4tc -1- 2tc] cycloadditions are depicted in Fig. 11.11. For the [4tc-1-2tc] suprafacial-suprafacial cycloaddition, the transition state is aromatic. For [2tc -F 2tc] cycloaddition, the suprafacial-suprafacial mode is antiaromatic, but the suprafacial-antarafacial mode is aromatic. In order to specify the topology of cycloaddition reactions, subscripts are added to the numerical classification. Thus, a Diels-Alder reaction is a [4tc -f 2 ] cycloaddition. The... [Pg.640]

Strained pertrifluoromethyl-substituted valence tautomers of aromatic systems, such as tetrakis(trifiuoromethyl)Dewar thiophene [87] and hexalas(tnfluorQ-methyl)benzvalene [Diels-Alder reactions with various cyclic and acyclic dienes (equations 76 and 77). [Pg.823]

The most notable chemistry of the biscylopen-tadienyls results from the aromaticity of the cyclopentadienyl rings. This is now far too extensively documented to be described in full but an outline of some of its manifestations is in Fig. 25.14. Ferrocene resists catalytic hydrogenation and does not undergo the typical reactions of conjugated dienes, such as the Diels-Alder reaction. Nor are direct nitration and halogenation possible because of oxidation to the ferricinium ion. However, Friedel-Crafts acylation as well as alkylation and metallation reactions, are readily effected. Indeed, electrophilic substitution of ferrocene occurs with such facility compared to, say, benzene (3 x 10 faster) that some explanation is called for. It has been suggested that. [Pg.1109]

The Diels-Alder reaction with triple bond dienophiles gives access to cyclo-hexa-1,4-diene derivatives. Further reaction of a reactive intermediate thus produced or a subsequent oxidation step can then lead to a six-membered ring aromatic target molecule. [Pg.93]

Just like the Diels Alder reaction or the 1,5-sigmatropic hydrogen shift, the ene reaction is believed to proceed via a six-membered aromatic transition state. [Pg.104]

The following example is a sequence consisting of a Knoevenagel condensation and a subsequent hetero-Diels-Alder reaction. An aromatic... [Pg.178]


See other pages where Diels-Alder reaction aromatic is mentioned: [Pg.717]    [Pg.717]    [Pg.42]    [Pg.123]    [Pg.27]    [Pg.75]    [Pg.82]    [Pg.88]    [Pg.91]    [Pg.101]    [Pg.162]    [Pg.168]    [Pg.178]    [Pg.20]    [Pg.85]    [Pg.193]    [Pg.530]    [Pg.562]    [Pg.629]    [Pg.678]    [Pg.2]    [Pg.73]   
See also in sourсe #XX -- [ Pg.151 ]

See also in sourсe #XX -- [ Pg.151 ]

See also in sourсe #XX -- [ Pg.151 ]

See also in sourсe #XX -- [ Pg.151 ]




SEARCH



4 //-Pyrazole, aromaticity Diels-Alder reaction

Aromatic compounds Diels-Alder reaction

Aromatic compounds reverse Diels-Alder reactions

Aromatic hetero Diels-Alder reaction

Aromaticity Diels-Alder reactions

Aromaticity Diels-Alder reactions

Conjugated hydrocarbons, aromaticity Diels-Alder reactions

Diels-Alder reaction aromatic derivatives

Diels-Alder reaction of polycyclic aromatic hydrocarbons

Diels-Alder reaction with aromatic heterocycles

Diels-Alder reaction with benzenoid aromatics

Intramolecular Diels-Alder Reactions toward Dihydroaromatic and Aromatic Products

Photo-Diels-Alder Cycloaddition Reactions of Aromatic Compounds

Polycyclic aromatic compounds Diels-Alder reactions

© 2024 chempedia.info