Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dielectric constant response

The observed dielectric constant M and the dielectric loss factor k = k tan S are defined by the charge displacement characteristics of the ceramic ie, the movement of charged species within the material in response to the appHed electric field. Discussion of polarization mechanisms is available (1). [Pg.342]

The dielectric constant is also affected by stmctural changes on strong heating. Also the value is very rank dependent, exhibiting a minimum at about 88 wt % C and rising rapidly for carbon contents over 90 wt % (4,6,45). Polar functional groups are primarily responsible for the dielectric of lower ranks. For higher ranks the dielectric constant arises from the increase in electrical conductivity. Information on the freedom of motion of the different water molecules in the particles can be obtained from dielectric constant studies (45). [Pg.221]

Heuristic Fxplanation As we can see from Fig. 22-31, the DEP response of real (as opposed to perfect insulator) particles with frequency can be rather complicated. We use a simple illustration to account for such a response. The force is proportional to the difference between the dielectric permittivities of the particle and the surrounding medium. Since a part of the polarization in real systems is thermally activated, there is a delayed response which shows as a phase lag between D, the dielectric displacement, and E, the electric-field intensity. To take this into account we may replace the simple (absolute) dielectric constant by the complex (absolute) dielectric... [Pg.2011]

Fig. 4.3. Typical normalized piezoelectric current-versus-time responses are compared for x-cut quartz, z-cut lithium niobate, and y-cut lithium niobate. The y-cut response is distorted in time due to propagation of both longitudinal and shear components. In the other crystals, the increases of current in time can be described with finite strain, dielectric constant change, and electromechanical coupling as predicted by theory (after Davison and Graham [79D01]). Fig. 4.3. Typical normalized piezoelectric current-versus-time responses are compared for x-cut quartz, z-cut lithium niobate, and y-cut lithium niobate. The y-cut response is distorted in time due to propagation of both longitudinal and shear components. In the other crystals, the increases of current in time can be described with finite strain, dielectric constant change, and electromechanical coupling as predicted by theory (after Davison and Graham [79D01]).
The real part describes the change in the phase factor (A/ ), which depends on the change in the dielectric constant (er) responsible for the phase shift. The change in the reflected microwave power as a consequence of an imposed potential change can therefore be written [by rewriting relation (6) with A as the proportionality constant] ... [Pg.439]

It is the hydrogen bond that determines in the main the magnitude and nature of the mutual interactions of water molecules and that is consequently responsible for the striking physical properties of this uniquely important substance. In this section we shall discuss the melting point, boiling point, and dielectric constant of water and related substances other properties of water are treated later (Sec. 12-4). [Pg.415]

The linear polarizability, a, describes the first-order response of the dipole moment with respect to external electric fields. The polarizability of a solute can be related to the dielectric constant of the solution through Debye s equation and molar refractivity through the Clausius-Mosotti equation [1], Together with the dipole moment, a dominates the intermolecular forces such as the van der Waals interactions, while its variations upon vibration determine the Raman activities. Although a corresponds to the linear response of the dipole moment, it is the first quantity of interest in nonlinear optics (NLO) and particularly for the deduction of stracture-property relationships and for the design of new... [Pg.95]

Another electrical measurement useful in detecting flocculation in aniso-metric particles is the response of dielectric constant to shear. The alignment along streamlines of flow which results from laminar shear in a viscometer decreases the dielectric constant of the system if the dipole moment lies along the long axis of the particle. Another way in which this phenomenon can be meas-... [Pg.102]

Zinc oxide is a thoroughly studied typical semiconductor of n-type with the width of forbidden band of 3.2 eV, dielectric constant being 10. Centers responsible for the dope electric conductivity in ZnO are provided by interstitial Zn atoms as well as by oxygen vacancies whose total concentration vary within limits 10 - 10 cm. Electron mobility in monocrystals of ZnO at ambient temperature amounts to 200 cm -s". The depth of donor levels corresponding to interstitial Zn and oxygen vacancies under the bottom of conductivity band is several hundredth of electron volt [18]. [Pg.114]

Water is the most common solvent used to dissolve ionic compounds. Principally, the reasons for dissolution of ionic crystals in water are two. Not stated in any order of sequence of importance, the first one maybe mentioned as the weakening of the electrostatic forces of attraction in an ionic crystal known, and the effect may be alternatively be expressed as the consequence of the presence of highly polar water molecules. The high dielectric constant of water implies that the attractive forces between the cations and anions in an ionic salt come down by a factor of 80 when water happens to be the leaching medium. The second responsible factor is the tendency of the ionic crystals to hydrate. [Pg.467]

A larger protein dielectric constant of four was used by Eberini et al. [124] to fit the experimental pKa, in a case where the protein structural relaxation upon protonation was especially large. The need for a larger protein dielectric suggests a breakdown of the linear response assumption for this system. It may be preferable in such a case to simulate an additional point along the reaction pathway, such as the midpoint, rather than shifting to what is effectively a parameter-fitting approach. [Pg.453]

The linear response of a medium to a weak applied electric field is characterized by the dielectric constant <0. From this experiment we deduce the molar polarization mP which is related to the mean square dipole moment by... [Pg.239]

Method involves placing a specimen between parallel plate capacitors and applying a sinusoidal voltage (frequencies ranging from 1 mHz to 1 MHz) to one of the plates to establish an electric field in the specimen. In response to this field, a specimen becomes electrically polarized and can conduct a small charge from one plate to the other. Through measurement of the resultant current, the dielectric constant and dielectric loss constant for a specimen can be measured. The sharp increases in both the dielectric constant and the dielectric loss constant during a temperature scan are correlated with the occurrence of Tg... [Pg.75]


See other pages where Dielectric constant response is mentioned: [Pg.316]    [Pg.316]    [Pg.1276]    [Pg.355]    [Pg.309]    [Pg.203]    [Pg.340]    [Pg.257]    [Pg.398]    [Pg.284]    [Pg.237]    [Pg.398]    [Pg.392]    [Pg.56]    [Pg.24]    [Pg.528]    [Pg.227]    [Pg.946]    [Pg.284]    [Pg.436]    [Pg.396]    [Pg.69]    [Pg.209]    [Pg.261]    [Pg.266]    [Pg.34]    [Pg.84]    [Pg.322]    [Pg.442]    [Pg.452]    [Pg.455]    [Pg.483]    [Pg.277]    [Pg.19]    [Pg.29]    [Pg.237]    [Pg.82]    [Pg.335]   
See also in sourсe #XX -- [ Pg.203 ]




SEARCH



Dielectric response

© 2024 chempedia.info