Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazopyruvates

The reaction of cyclohexene with the diazopyruvate 25 gives unexpectedly ethyl 3-cyclohexenyl malonate (26), involving Wolff rearrangement. No cyclo-propanation takes place[28]. 1,3-Dipolar cycloaddition takes place by the reaction of acrylonitrile with diazoacetate to afford the oxazole derivative 27[29]. Bis(trimethylstannyl)diazomethane (28) undergoes Pd(0)-catalyzed rearrangement to give the A -stannylcarbodiimide 29 under mild conditions[30]. [Pg.532]

Jackson and Manske described the decomposition of diazoacetic ester with indoles to give, after hydrolysis, the 3-acetic acid and some 1,3-diacetic acid no product of 2-substitution was found (see also ref. 49). Diazoacetone and diazopyruvic ester similarly gave the 3-sub-stituted indoles.Badger et al. have also examined the reaction of iV -methylindole, as well as of indole, with diazoacetic ester. Again only the 3-substituted product resulted and no evidence was obtained for addition. [Pg.66]

Many of the early workers who studied the thermal decomposition reactions of diazocarbonyl compounds found that the addition of copper metal or copper salts allowed the reaction to be achieved at a lower temperature,<63AG(E)565, 64CB2628, 73JOU431> although no detailed study of this catalytic effect was undertaken. Alonso and Jano studied the copper-salt reaction of ethyl diazopyruvate 26 with acetonitrile and benzonitrile. The... [Pg.8]

Section B gives some examples of metal-catalyzed cyclopropanations. In Entries 7 and 8, Cu(I) salts are used as catalysts for intermolecular cyclopropanation by ethyl diazoacetate. The exo approach to norbornene is anticipated on steric grounds. In both cases, the Cu(I) salts were used at a rather high ratio to the reactants. Entry 9 illustrates use of Rh2(02CCH3)4 as the catalyst at a much lower ratio. Entry 10 involves ethyl diazopyruvate, with copper acetylacetonate as the catalyst. The stereoselectivity of this reaction was not determined. Entry 11 shows that Pd(02CCH3) is also an active catalyst for cyclopropanation by diazomethane. [Pg.930]

Diazo-1,3-dicarbonyl compounds such as alkyl 2-diazo-3-oxobutyrates 57a, b and 3-diazo-2,4-pentanedione 57 c behave like the diazopyruvate 56, as far as their carbenoid cycloaddition behavior is concerned 114,130). [Pg.116]

The comparison between the cycloaddition behavior of simple diazoketones and of ethyl diazopyruvate 56 towards the same olefin underlines the crucial influence of the ethoxycarbonyl group attached to the carbonyl function. This becomes once again evident when COOEt is replaced by an acetal function, such as in l-diazo-3,3-di-methoxy-2-butanone 86 with enol ethers and acetates, cyclopropanes rather than dihydrofurans are now obtained 113). ... [Pg.123]

For example, reaction of ethyl diazopyruvate with cyclohexene in the presence of rhodium 126) or copper113 126 catalysts furnishes, besides the 7-exo-substituted norcarane 108, a small amount of 110, which may arise either from allylic insertion or from the 7-mfo-substituted norcarane 109 by a thermal 1,5-homo-hydrogen shift. [Pg.132]

Ethyl diazopyruvate, under copper catalysis, reacts with alkynes to give furane-2-carboxylates rather than cyclopropenes u3) (Scheme 30). What looks like a [3 + 2] cycloaddition product of a ketocarbenoid, may actually have arisen from a primarily formed cyclopropene by subsequent copper-catalyzed ring enlargement. Such a sequence has been established for the reaction of diazoacetic esters with acetylenes in the presence of certain copper catalysts, but metallic copper, in these cases, was not able to bring about the ring enlargement14). Conversely, no cyclopropene derivative was detected in the diazopyruvate reaction. [Pg.175]

The reaction, formally speaking a [3 + 2] cycloaddition between the aldehyde and a ketocarbene, resembles the dihydrofuran formation from 57 a or similar a-diazoketones and alkenes (see Sect. 2.3.1). For that reaction type, 2-diazo-l,3-dicarbonyl compounds and ethyl diazopyruvate 56 were found to be suited equally well. This similarity pertains also to the reactivity towards carbonyl functions 1,3-dioxole-4-carboxylates are also obtained by copper chelate catalyzed decomposition of 56 in the presence of aliphatic and aromatic aldehydes as well as enolizable ketones 276). No such products were reported for the catalyzed decomposition of ethyl diazoacetate in the presence of the same ketones 271,272). The reasons for the different reactivity of ethoxycarbonylcarbene and a-ketocarbenes (or the respective metal carbenes) have only been speculated upon so far 276). [Pg.193]

Goodfellow, V.S., Settineri, M., and Lawton, R.G. (1989) p-Nitrophenyl 3-diazopyruvate and diazopyru-vamides, a new family of photoactivatable cross-linking bioprobes. Biochemistry 28, 6346. [Pg.1067]

Acetylenedicarboxylic acid esters and related activated alkynes are routinely used as dipolarophiles for diazo dipoles. Recent examples include the use of diazo compounds 20 (49), 23 (51), and 24 (52) (Scheme 8.7), 25 (56) (Scheme 8.8), diazoacetaldehyde dimethylacetal (41) (which after cycloaddition and deprotection gave the corresponding pyrazole-3-carbaldehyde), ethyl 3-diazopyruvate (270), p-tolyl-trifluoromethyldiazomethane (271), bis(trifluoromethyl)diazomethane (272), and diazomethylenephosphoranes (60). [Pg.584]

Examples are known where intermolecular carbenoid transformations between diazomalonates or certain diazoketones and appropriate olefins result in competition between formation of cyclopropane and products derived from allylic C—H insertion2-4. For example, catalytic decomposition of ethyl diazopyruvate in the presence of cyclohexene gave the 7-ejco-substituted norcarane 93 together with a small amount of the allylic C—H insertion product 94 (equation 95)142 143. In some cases, e.g. rhodium(II) decomposition of a-diazo-j8-ketoester 95, the major pathway afforded C—H insertion products 96 and 97 with only a small amount of the cyclopropane derivative 98. In contrast, however, when a copper catalyst was employed for this carbenoid transformation, cyclopropane 98 was the dominant product (equation 96)144. The choice of the rhodium(II) catalyst s ligand can also markedly influence the chemoselectivity between cyclopropanation and C—H... [Pg.683]

The structure of the carbenoid has considerable effect on the outcome of the reaction with vinyl ethers. Unlike the case with diazoacetate, reaction with diazopyruvate resulted in the formation of a dihydrofu-ran (17) rather than a cyclopropane (equation 8).26d The reaction is a formal [2 + 3] cycloaddition but it... [Pg.1035]

The Cope rearrangement of c/j-di vinylcyclopropanes is thermally allowed and offers an attractive stereoselective approach to cycloheptadienes. Cyclopropanation reactions can be used to prepare divi-nylcyclopropanes, as shown in Scheme 23.120 Reaction of ethyl diazopyruvate with butadiene generated... [Pg.1048]


See other pages where Diazopyruvates is mentioned: [Pg.66]    [Pg.113]    [Pg.117]    [Pg.118]    [Pg.133]    [Pg.207]    [Pg.207]    [Pg.232]    [Pg.322]    [Pg.322]    [Pg.322]    [Pg.322]    [Pg.322]    [Pg.687]    [Pg.1033]    [Pg.1051]    [Pg.185]    [Pg.185]    [Pg.206]   
See also in sourсe #XX -- [ Pg.207 ]

See also in sourсe #XX -- [ Pg.192 ]




SEARCH



1.3- Butadiene reaction with ethyl diazopyruvate

Amines p-nitrophenyl diazopyruvate

Carbenes diazopyruvates

Diazo compounds diazopyruvates

Ethyl diazopyruvate

Nitrophenyl Diazopyruvate

Reaction diazopyruvates

© 2024 chempedia.info