Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazomethane reaction with alkenes

Diazoacetic esters, reactions with alkenes, alkynes, heterocyclic and aromatic compounds, 18, 3 26, 2 a-Diazocarbonyl compounds, insertion and addition reactions, 26, 2 Diazomethane ... [Pg.588]

The 1,3-dipolar cycloaddition reaction of diazoalkanes with alkenes has also been reported (395). Kanemasa and Kanai (395) used the chiral DBFOX-Ph ligand with various metals such as Ni, Zn, and Mg for the preparation of 255a-c. The reaction of TMS-diazomethane 171 with alkene 241 was catalyzed by 10 mol% of 255b to afford the 1,3-dipolar cycloaddition product 296 in good yields and enantioselectivities of up to 99% ee (Scheme 12.96). Also, the Ni-catalyst 255a and the Mg-catalyst 255c were excellent catalysts for the reaction, resulting in >90% ee in both cases. [Pg.888]

As with other diazoalkanes, diazomethane reacts with alkenes to form cyclopropane derivatives (sec. 13.9.C.i).272 Reaction with aromatic derivatives leads to ring expansion to cycloheptatriene derivatives.223 Both of these reactions (addition to an alkene or arene insertion) involve generation of an intermediate carbene and addition to a jt bond they will be discussed below. Many of the reactions of diazomethane tend to be ionic in nature and are, therefore, set aside from the other diazoalkane chemistry in this section. One of the commonest uses of diazomethane itself is esterification of small quantities of acids, especially acids that are precious for one reason or another. The reaction is quantitative and gives good yields of a single product, as in Tadano s conversion of 338 to the methyl ester of 339224 in a synthesis of (-)-verrucarol. [Pg.1203]

Before we close the discussion of carbene reactions with alkenes we mention tetrahedral boron hydride-substituted diazomethanes (8.11-8.13) which were obtained by the group of Jones (Li and Jones, 1992 Li et al., 1993) by manipulating substituted o-carboranes, as shown in (8-19). Reaction of 8.13 with ( )-but-2-ene yielded the pure (jE )-derivative, i.e., the product of singlet addition. With (Z)-but-2-ene 3 % triplet reaction product was observed. The percentage of triplet products was higher with 8.13 (22 and 18 7o with (E)- and (Z)-but-2-ene, respectively) (Huang et al., 1992). [Pg.324]

Derivatives. TrimethylsUylacetyl thiolesters, which have been used as precursors to 8-lactams, are prepared by reaction of the appropriate thiol with the acid chloride derivative of (1). Acid (1) has also been used as a precursor to l-diazo-3-trimethylsilyl-acetone, which provides cyclopropyl trimethylsilylmethyl ketones upon reaction with alkenes, through reaction of the acid chloride or a mixed anhydride derivatives of the acid (1) with diazomethane. ... [Pg.562]

Diazomethane is a valuable and useful agent in organic synthesis that can be employed as a Ci building block in many single-step chemical reactions, for example, the methylation of alcohols or phenols, esteriflcations of carbonic adds, cyclopropanation reactions with alkenes, the synthesis of heterocycles, and the synthesis of a-diazoketones from acid chlorides or anhydrides. In general, the reactions proceed with release of nitrogen. Usually, diazomethane is freshly prepared from N-methyl-nitroso compounds and aqueous KOH solution and can be stored as a cooled solution for a couple of days. However, its low boiling point... [Pg.143]

The transition metal-catalyzed reaction of diazoalkanes with acceptor-substituted alkenes is far more intricate than reaction with simple alkenes. With acceptor-substituted alkenes the diazoalkane can undergo (transition metal-catalyzed) 1,3-dipolar cycloaddition to the olefin [651-654]. The resulting 3//-pyrazolines can either be stable or can isomerize to l//-pyrazolines. 3//-Pyrazolines can also eliminate nitrogen and collapse to cyclopropanes, even at low temperatures. Despite these potential side-reactions, several examples of catalyzed cyclopropanations of acceptor-substituted alkenes with diazoalkanes have been reported [648,655]. Substituted 2-cyclohexenones or cinnamates [642,656] have been cyclopropanated in excellent yields by treatment with diazomethane/palladium(II) acetate. Maleates, fumarates, or acrylates [642,657], on the other hand, cannot, however, be cyclopropanated under these conditions. [Pg.115]

Confirmation was provided by the observation that the species produced by the photolysis of two different carbene sources (88 and 89) in acetonitrile and by photolysis of the azirine 92 all had the same strong absorption band at 390 nm and all reacted with acrylonitrile at the same rate (fc=4.6 x 10 Af s" ). Rate constants were also measured for its reaction with a range of substituted alkenes, methanol and ferf-butanol. Laser flash photolysis work on the photolysis of 9-diazothioxan-threne in acetonitrile also produced a new band attributed the nitrile ylide 87 (47). The first alkyl-substituted example, acetonitrilio methylide (95), was produced in a similar way by the photolysis of diazomethane or diazirine in acetonitrile (20,21). This species showed a strong absorption at 280 nm and was trapped with a variety of electron-deficient olefinic and acetylenic dipolarophiles to give the expected cycloadducts (e.g., 96 and 97) in high yields. When diazomethane was used as the precursor, the reaction was carried out at —40 °C to minimize the rate of its cycloaddition to the dipolarophile. In the reactions with unsymmetrical dipolarophiles such as acrylonitrile, methyl acrylate, or methyl propiolate, the ratio of regioisomers was found to be 1 1. [Pg.487]

Trifluoromethyl-substituted pyrazoles are easily obtained using trifluoromethyl-alkynes as dipolarophiles (Table 8.2, entry 9). Thus, treatment of 4,4,4-trifluorobut-2-ynoic acid with excess diazomethane gave methyl 4-(trifluoromethyl)pyrazole-4-carboxylate (45%) accompanied by its N - (32%) and -methylated (6.5%) derivatives (267). Another convenient route to CF3-substituted pyrazoles involves dipolar cycloaddition of appropriately CF3-substituted alkenes followed by eliminative aromatization (76,77,268). For example, the reaction of alkenes such as (CF3)2C=C(H)COAr with ethyl diazoacetate gave 4-aroyl-5-trifluoromethylpyra-zole-3-carboxylates (268). [Pg.584]

A practicable strategy to provide access to chiral pyrazolidine-3-carboxylic acid (16) makes use of asymmetric dipolar cycloaddition of diazoalkanes to u,p-unsaturated carboxylic acid derivatives. For this purpose a chiral auxiliary of the alkene component is used, e.g. Op-polzer s1166 1671 (lf )-2,10-camphorsultam.t164l As shown in Scheme 7, by reaction of (tri-methylsilyl)diazomethane (41) with /V-( aery I oy I )cam p h ors u 11 am (42), the AL(4,5-dihy-dropyrazoline-5-carbonyl)camphorsultam (43) is obtained. Reduction of 44 with sodium cyanoborohydride leads to A-(pyrazolidine-3-carbonyl)camphorsultam (45) as the 35-dia-stereoisomer (ee 9 1) in 65 to 80% yields.[164] The camphorsultam 45 is then converted into the methyl ester 46 by reaction with magnesium methylate without racemizationj1641... [Pg.71]

Although it has been established that the HOMO (diazoalkane)-LUMO (alkene) controlled concerted cycloaddition occurs without intervention of any intermediate for the reactions of simple diazoalkanes with alkenes, Huisgen once proposed a mechanistic alternative 4 namely an initial hypothetical nitrene-type 1,1-cycloaddition reaction of phenyldiazomethane to styrene followed by a vinylcyclopropane-cy-clopentene-type 1,3-sigmatropic rearrangement Control experiments, however, excluded this hypothesis for the bimolecular 1,3-dipolar cycloaddition reaction of diazomethane (Scheme 60).204... [Pg.1103]

Olefinic double bonds substituted with one or more electron-withdrawing groups show significant dipolarophilic activity in cycloaddition reactions with organic azides,43,276-278 similar to the electron-rich double bonds of enamines and enol ethers the reactivity is less pronounced in azide additions compared to that observed in diazomethane reactions.7 The first triazolines reported resulted by the action of aryl azides on benzoquinones.1,279-281 As a rule, stereospecific cis additions occur,32 which are usually unidirectional except in the case of methacrylic derivatives67 and certain alkenes bearing... [Pg.266]

Palladium-catalyzed methylene transfer from diazomethane has proved effective for the cyclopropanation of 1-alkenylboronic acid esters allylic alcohols and amines 1-oxy-l,3-butadienes and allenes " Readily accessible iron complex (CO)2FeCH2S Me2 BF4 35 undergoes direct reaction with a range of alkenes to give cyclopropanes (equation 67) The salt is sensitive to steric effects and the reaction proceeds... [Pg.282]

Due to the electrophilic character of carbenes. they are not expected to easily react with electron-poor alkenes, and the only reported examples concern reactions with diazo compounds (i.e., diazomethane, diazofluorcnc. ethyl diazoacetate. and phenyldiazoniethane ). However, depending on the reaction conditions, carbenes arc not always the reactive species. Cyclopropanes are often obtained by decomposition of pyrazolines which arise from 1,3-dipolar cycloaddilion reactions (see Section 2.1.1.6.2.3.1.). Even when reactions are performed under irradiation, pyrazolines can be obtained as the result of a diradical addition. ... [Pg.555]

Although the reaction of dihalocarbenes with alkenes gives good yields of halogenated cyclopropanes, this is not usually the case with methylene, tCH2, the simplest carbene. Methylene is readily formed by heating diazomethane, CH2N2, which decomposes and loses N2, but the reaction of CH2 with alkenes often affords a complex mixture of products. Thus, this reaction cannot be reliably used for cyclopropane synthesis. [Pg.1014]


See other pages where Diazomethane reaction with alkenes is mentioned: [Pg.494]    [Pg.1006]    [Pg.168]    [Pg.133]    [Pg.28]    [Pg.191]    [Pg.87]    [Pg.540]    [Pg.543]    [Pg.570]    [Pg.837]    [Pg.520]    [Pg.523]    [Pg.550]    [Pg.683]    [Pg.655]    [Pg.282]    [Pg.659]    [Pg.655]    [Pg.71]    [Pg.242]    [Pg.247]    [Pg.256]    [Pg.659]   
See also in sourсe #XX -- [ Pg.1203 ]

See also in sourсe #XX -- [ Pg.319 ]




SEARCH



Diazomethane, reactions

Reaction with alkenes

Reaction with diazomethane

With diazomethane

With diazomethanes

© 2024 chempedia.info