Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazoacetate, cyclopropanation with, cobalt complexes

Cyclopropanation of C=C bonds by carbenoids derived from diazoesters usually occurs stereospeciflcally with respect to the configuration of the olefin. This has been confirmed for cyclopropanation with copper 2S,S7,60 85), palladium 86), and rhodium catalysts S9,87>. However, cyclopropanation of c -D2-styrene with ethyl diazoacetate in the presence of a (l,2-dioximato)cobalt(II) complex occurs with considerable geometrical isomerization88). Furthermore, CuCl-catalyzed cyclopropanation of cis-2-butene with co-diazoacetophenone gives a mixture of the cis- and trans-1,2-dimethylcyclopropanes 89). [Pg.105]

In 2003, Cenini and coworkers reported (tetraarylporphyrin)cobalt(II) complexes 326 as efficient catalysts (1 mol%) for cyclopropanations. In the absence of air, styrenes 321 underwent an efficient cyclopropanation with ethyl diazoacetate 322 giving cyclopropanes 324 in 65-99% yield with 3-5 1 trans/cis ratios (Fig. 77) [348]. Simple olefins and more hindered diazoesters did not react. With diazoacetate and hydrocarbons, such as cyclohexane or benzene, C-H insertion took place furnishing cyclohexyl- or phenylacetate. In line with Ikeno s proposal the cyclopropanation reaction was considerably slowed down in the presence of TEMPO, though not completely inhibited. Based on a kinetic analysis a two-electron catalytic cycle with a bridged carbene unit was formulated, however. [Pg.277]

The ruthenium(ll) complex 20175c,d and the cobalt complexes 21179a and 22197b are also able to produce remarkable enantioselectivities in intermolecular cyclopropanation reactions. For the cyclopropanation of styrene with alkyl diazoacetates, the following ee-values have been reported 20 /t/V-buty , 94% (trans), 85% (cis), /-menthyl, 95% (as), 76% (trans), /-menthyl, 86% (cis), 95% (trans) 21 ethyl, 75% (cis), 20% (trans) 22 tert-butyl, 73% (trans). It is interesting to note that a catalyst analogous to 20, but with copper(II) triflate instead of ruthenium, displayed only low enantiocontrol.220b... [Pg.462]

Alkoxycarbonylcarbenes, which are frequently used for cyclopropanation, have been reviewed by Marchand and Brockway.In conjunction with a copper complex of an asymmetric ligand, ethyl diazoacetate will condense with 2,5-dimethyl-hexa-2,4-diene to give optically active chrysanthemic ester.With a cobalt complex of (+ )-camphorquinone dioxime, enantioselectivities as high as 70 % could be obtained in the addition of diazoacetate to 1,1-disubstituted olefins. As would be expected, choice of both metal and chelate is critical in such asymmetric syntheses. ... [Pg.27]

Enantioselective carbenoid cyclopropanation can be expected to occur when either an olefin bearing a chiral substituent, or such a diazo compound or a chiral catalyst is present. Only the latter alternative has been widely applied in practice. All efficient chiral catalysts which are known at present are copper or cobalt(II) chelates, whereas palladium complexes 86) proved to be uneflective. The carbenoid reactions between alkyl diazoacetates and styrene or 1,1 -diphenylethylene (Scheme 27) are usually chosen to test the efficiency of a chiral catalyst. As will be seen in the following, the extent to which optical induction is brought about by enantioselection either at a prochiral olefin or at a prochiral carbenoid center, varies widely with the chiral catalyst used. [Pg.159]

Even before Aratani introduced his chiral salicylaldimine copper catalysts, Nakamura and Otsuka reported in 1974 that chiral bis(a-camphorquinonedioximato)cobalt(II) (29) and related complexes were effective enantioselective cyclopropanation catalysts [76], and they more fully described the preparation, characteristics, and uses of these catalysts in 1978 [77], Optical yields as high as 88% were achieved for the cyclopropanation of styrene with neopentyl diazoacetate, and chemical yields greater than 90% were obtained in several cases. [Pg.208]

Zhang s group developed highly active chiral (porphyrin)cobalt(II) complexes 327b-d, which catalyzed the cyclopropanation reactions of styrenes [356-358] and even of ot,(3-unsaturated esters or nitriles [358, 359] by diazoacetates. Nitrodi-azoacetates [360] or sulfonyldiazomethane [361] also proved to be useful in asymmetric cyclopropanation reactions of styrenes, acrylic derivatives, and in some cases even simple olefins with good to high de and moderate to excellent ee (highlight [362]). [Pg.278]

Bis(camphorquinone-a-dioximato)cobalt(II) (10) has been developed as a catalyst for enan-tioselective cyclopropanation reactions. It allows selective carbene transfer from diazoacetic esters to terminal C-C double bonds which are in conjugation with vinyl, aryl, alkoxycarbonyl or cyano groups, but not to alkyl-substituted alkenes, cycloalkenes, 1,3-dienes and al-lenes. The unusual chemoselectivity and some other experimental observations make the two mechanistic pathways proposed vide supra) questionable for these special carbene-transfer reactions. In contrast, the cobalt(II) complex 11 allows not only the cyclopropanation of styrene but also of oct-l-ene, a nonactivated alkene (ethyl diazoacetate, 35 °C, 3mol% of catalyst yield 50-60%). ... [Pg.449]

Similarly, ra 5-cyclopropanes were obtained from alkenes, such as styrene and 2,5-dimethyl-hexa-2,4-diene, with relative yields > 90% when a diazoacetate bearing a bulky ester group was decomposed by a copper catalyst with bulky salicylaldimato ligands. Several metal complexes with bulky Cj-symmetrlc chiral chelating ligands are also suitable for this purpose, e.g. (metal/ligand type) copper/bis(4,5-dihydro-l,3-oxazol-2-yl)methane copper/ethyl-enediamine ruthenium(II)/l,6-bis(4,5-dihydro-l, 3-oxazol-2-yl)pyridine cobalt(III)/ salen. The same catalysts are also suited for enantioselective reactions vide infra). For the anti selectivity obtained with an osmium-porphyrin complex, see Section 1.2.1.2.4.2.6.3.1. [Pg.455]

Enantioselection can be controlled much more effectively with the appropriate chiral copper, rhodium, and cobalt catalyst.The first major breakthrough in this area was achieved by copper complexes with chiral salicylaldimine ligands that were obtained from salicylaldehyde and amino alcohols derived from a-amino acids (Aratani catalysts ). With bulky diazo esters, both the diastereoselectivity (transicis ratio) and the enantioselectivity can be increased. These facts have been used, inter alia, for the diastereo- and enantioselective synthesis of chrysan-themic and permethrinic acids which are components of pyrethroid insecticides (Table 10). 0-Trimethylsilyl enols can also be cyclopropanated enantioselectively with alkyl diazoacetates in the presence of Aratani catalysts. In detailed studies,the influence of various parameters, such as metal ligands in the catalyst, catalyst concentration, solvent, and alkene structure, on the enantioselectivity has been recorded. Enantiomeric excesses of up to 88% were obtained with catalyst 7 (R = Bz = 2-MeOCgH4). [Pg.457]

The ability of chiral bis(camphorquinone-a-dioximato)cobalt(Il) complexes (Section 1.2.1.2.4.2.6.3.1.) to catalyze carbene transfer from diazocarbonyl compounds (diazoacetic esters, 2-diazo-l-phenylethan-l-one) to terminal alkenes conjugated with vinyl, aryl, carbonyl, and cyano groups, has already been mentioned. The ee-values are 75-88 /o at best, often lower. The highest values are again obtained with bulky diazoacetic esters. The significance of these catalysts, however, is their ability to promote cyclopropanation of electron-deficient alkenes, such as acrylates and acrylonitriles, in contrast to the rhodium and copper catalysts discussed above. [Pg.462]

Recently, another cobalt(II)/camphor-derived complex was developed for performing the asymmetric cyclopropanation of olefins [38]. The complex 18 was prepared by reacting the ligand 17, synthesized by condensation of (lR)-3-hydroxymethylenebornane-2-thione and the corresponding diamine, with co-balt(II) dichloride hexahydrate in degassed ethanol (Scheme 11). The cyclopropane derivatives were obtained in 50-60% yield using 3 mol % of the catalyst 18 and ethyl diazoacetate in styrene or 1-octene as solvent. The diastereomeric ratios were low for both styrene and 1-octene. [Pg.568]

A cobalt(ll) complex with (1 / )-3-hydroxymethylenebornane-2-thione as ligand catalyzes the reaction of phenylethene and ethyl diazoacetate giving the /mn.s-pi oducl with 20 % ee and the m-isomcr with 17% ee121. For the cyclopropanation of 1-octene with this catalyst a surprisingly high ee of 95% is obtained for the trans-product. [Pg.1037]

Occasionally, systems with complexes of ruthenium and cobalt have been reported to catalyze intramolecular cyclopropanation of allylic diazoacetate with high enantiocontrols. For cobalt-salen 39, up to 97% ee was observed (Scheme 30) (128). More recently, methods other than diazo decomposition were applied in intramolecular cyclopropanation. Activated by irradiation, [WlCOle] catalyzed the cyclopropanation of alkynol to give good yield of cyclopropane (Scheme 31) (129). The reaction was proposed via a tungsten—carbene intermediate. [Pg.895]

Schemes 58-62. A new non-rigid phosphine ligand was synthesized and reacted with Fe(CO)5 to form the mononuclear iron complex (Equation (81)). Phosphino-oxazoline ligands were used as assembling ligands for hetero-metallic complexes, where the phosphorus atom binds to iron and the nitrogen atoms act as donor atoms to copper, cobalt, or palladium (Scheme 58). The copper complex catalyzes cyclopropanation and Diels-Alder reactions. When 2-(A -diphenylphosphinomethyl-A -cyclohexyl)aminopyridine (NNP) reacts with Fe(CO)5 in ethanol, /ra .r-(OC)3Fe(NNP)2 is formed (Scheme 59). This monometallic complex can then be reacted with a copper salt in CH2GI2 to form a complex having an Fe-Cu dative bond. The complex was demonstrated to be an efficient catalyst for the cyclopropanation of styrene by ethyl diazoacetate and for the Diels-Alder reaction of cyclopentadiene and methacrolein. No other heterometallic complexes have been shown to have such reactivity. Previously known... Schemes 58-62. A new non-rigid phosphine ligand was synthesized and reacted with Fe(CO)5 to form the mononuclear iron complex (Equation (81)). Phosphino-oxazoline ligands were used as assembling ligands for hetero-metallic complexes, where the phosphorus atom binds to iron and the nitrogen atoms act as donor atoms to copper, cobalt, or palladium (Scheme 58). The copper complex catalyzes cyclopropanation and Diels-Alder reactions. When 2-(A -diphenylphosphinomethyl-A -cyclohexyl)aminopyridine (NNP) reacts with Fe(CO)5 in ethanol, /ra .r-(OC)3Fe(NNP)2 is formed (Scheme 59). This monometallic complex can then be reacted with a copper salt in CH2GI2 to form a complex having an Fe-Cu dative bond. The complex was demonstrated to be an efficient catalyst for the cyclopropanation of styrene by ethyl diazoacetate and for the Diels-Alder reaction of cyclopentadiene and methacrolein. No other heterometallic complexes have been shown to have such reactivity. Previously known...

See other pages where Diazoacetate, cyclopropanation with, cobalt complexes is mentioned: [Pg.363]    [Pg.279]    [Pg.697]    [Pg.567]    [Pg.344]    [Pg.888]    [Pg.888]    [Pg.110]    [Pg.234]    [Pg.276]    [Pg.455]    [Pg.37]    [Pg.182]   
See also in sourсe #XX -- [ Pg.309 ]




SEARCH



Cobalt complexes, with

Cyclopropanation complexes

Cyclopropanation diazoacetates

Cyclopropanes diazoacetates

Diazoacetate

Diazoacetates

Diazoacetic

With cyclopropane

© 2024 chempedia.info