Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazo compounds reactions with ketones

Diazo compounds react with aldehydes and ketones to give homologated carbonyl compounds and epoxides. Lewis acids accelerate these processes, and in some cases direct the reactions to single products. frara-Epoxides result from aldehydes and ethyldiazoacetates in the presence of MeReOs (although this can occur via a metal carbene pathway rather than a Lewis acid mechanism) [139], whereas... [Pg.623]

Diazo ketones also possess an electrophilic diazo group, and hence are susceptible to diazo-coupling reactions with suitable soft nucleophiles. Examples are given in equations (11) and (12). Phospha-zines such as (19) are useful synthetic intermediates in their own right. The carbon terminus of the 1,3-dipole possesses nucleophilic properties and can participate in aldol-type reactions with the particularly electrophilic carbonyl groups in 1,2-di- and 1,2,3-tri-carbonyl compounds. Intramolecular condensations occur with greater ease (equation 13). Reaction of diazo ketones of the type summarized in equations (9)-(12) have been thoroughly reviewed. ... [Pg.893]

Cyclization of diazopyrazoles 9 is also possible by a two-step process, firstly by reaction of diazo compounds 9 with primary amines followed by cyclization of the formed triazenes 18 with phosgene (X = Y = Cl), diimidazolyl ketone (X = Y = imidazolyl) or trichloromethyl chloroformate (X = Cl Y = CC1,).36... [Pg.865]

Cyclic ketones are converted smoothly to diazo ketones in the presence of HMPA. 4-Nitrophenyl azide (128) exhibits a diazo transfer reaction with malonates and cyclic 1,3-cyclohexanedione (128) in some cases diazo compound 129 further leads to fused triazole derivative (130) formation.52... [Pg.670]

Reaction of boranes with diazo compounds Synthesis of ketones from ethylene derivatives... [Pg.461]

The problem of the synthesis of highly substituted olefins from ketones according to this principle was solved by D.H.R. Barton. The ketones are first connected to azines by hydrazine and secondly treated with hydrogen sulfide to yield 1,3,4-thiadiazolidines. In this heterocycle the substituents of the prospective olefin are too far from each other to produce problems. Mild oxidation of the hydrazine nitrogens produces d -l,3,4-thiadiazolines. The decisive step of carbon-carbon bond formation is achieved in a thermal reaction a nitrogen molecule is cleaved off and the biradical formed recombines immediately since its two reactive centers are hold together by the sulfur atom. The thiirane (episulfide) can be finally desulfurized by phosphines or phosphites, and the desired olefin is formed. With very large substituents the 1,3,4-thiadiazolidines do not form with hydrazine. In such cases, however, direct thiadiazoline formation from thiones and diazo compounds is often possible, or a thermal reaction between alkylideneazinophosphoranes and thiones may be successful (D.H.R. Barton, 1972, 1974, 1975). [Pg.35]

Polyfluoroalkyl- andperfluoroalkyl-substituted CO and CN multiple bonds as dipolarophiles. Dmzo alkanes are well known to react with carbonyl compounds, usually under very mild conditions, to give oxiranes and ketones The reaction has been interpreted as a nucleophilic attack of the diazo alkane on the carbonyl group to yield diazonium betaines or 1,2,3 oxadiazol 2 ines as reaction intermediates, which generally are too unstable to be isolated Aromatic diazo compounds react readily with partially fluorinated and perfluorinated ketones to give l,3,4-oxadiazol-3-ines m high yield At 25 °C and above, the aryloxa-diazolines lose nitrogen to give epoxides [111]... [Pg.860]

Reaction with alcohols is general for diazo compounds, but it is most often performed with diazomethane to produce methyl ethers or with diazo ketones to produce ot-keto ethers, since these kinds of diazo compounds are most readily available. With diazomethane the method is expensive and requires great caution. It is used chiefly to methylate alcohols and phenols that are expensive or available in small amounts, since the conditions are mild and high yields are obtained. Hydroxy compounds react better as their acidity increases ordinary alcohols do not react at... [Pg.479]

The reaction has also been applied to compounds with other leaving groups. Diazo ketones, diazo esters, diazo nitriles, and diazo aldehydes react with trialkylboranes in a similar manner, for example. [Pg.561]

As it is known from experience that the metal carbenes operating in most catalyzed reactions of diazo compounds are electrophilic species, it comes as no surprise that only a few examples of efficient catalyzed cyclopropanation of electron-poor alkeiies exist. One of those examples is the copper-catalyzed cyclopropanation of methyl vinyl ketone with ethyl diazoacetate 140), contrasting with the 2-pyrazoline formation in the purely thermal reaction (for failures to obtain cyclopropanes by copper-catalyzed decomposition of diazoesters, see Table VIII in Ref. 6). [Pg.125]

Reaction of carbonyl compounds with aliphatic diazo compounds to deliver homologated ketones. [Pg.94]

A neutral diazo compound can be considered as both a nucleophile and an electrophile. Thus, it can be substituted by the combination of an electrophilic moiety and a nucleophilic moiety (X+ Nu ") (Scheme 8). In practice, the diazomethyl group is transformed to the fluoromethyl group by treatment with hydrogen fluoride/pyridine mixture (70 30 w/w) (X = H Nu = F), or to the halofluoromethyl group by addition of A-halosuccinimide in the same medium (X = Cl, Br, I Nu = F), e.g. formation of l.16 The reaction can be performed on secondary diazo alkanes, diazo ketones or diazo esters.16 90 316... [Pg.732]

Diazocarbonyl compounds, especially diazo ketones and diazo esters [19], are the most suitable substrates for metal carbene transformations catalyzed by Cu or Rh compounds. Diazoalkanes are less useful owing to more pronounced carbene dimer formation that competes with, for example, cyclopropanation [7]. This competing reaction occurs by electrophilic addition of the metal-stabilized carbocation to the diazo compound followed by dinitrogen loss and formation of the alkene product that occurs with regeneration of the catalytically active metal complex (Eq. 5.5) [201. [Pg.194]

Enamine formation occurs by the thermolysis of diazo compounds (Scheme 150)67 109,278 284 288,304 332 453 454 via a carbene-like intermediate.284 332 When R1 = Ph, it enters into competition with hydrogen migration,284,332 and the electrophilic character of the carbene enhances the migration of the dimethylaminophenyl more than the phenyl.332 When triazoline synthesis is carried out at temperatures higher than that at which thermolysis of diazo compounds occurs, enamines are obtained exclusively, as in the addition of phenyl azide to cinnamic nitriles and ketones, with phenyl migration dominating in the nitrile.284 Enamine is also formed quantitatively in the reaction of ethyl diazoacetate with benzylideneaniline at 110°C.455... [Pg.323]

Substitution of the acetate group at the C-3 position of the /3-sultam 105 can occur by reaction with silyl enol ethers in the presence of zinc iodide or zinc chloride. When the diazo compound is used, after desilylation with tetrabutyl-ammonium fluoride (TBAF), photochemical cyclization gives the bicyclic /3-sultam 106 as a mixture of two cis/ fra -diastereoisomers. When silyl enol ethers derived from cyclic ketones are used, the substitution product is stabilized by a retro-Michael-type reaction leading to open-chained sulfonamides 107 (Scheme 31) <1997LA1261>. [Pg.741]

The problem with reactions like this is that both the starting material and product are ketones, so they work cleanly only if the starting material is more reactive than the product. Cyclohexanone is more reactive as an electrophile than either cyclopentanone or cycloheptanone, so it ring expands cleanly to cycloheptanone. But expansion of cyclopentanone to cyclohexanone is messy and gives a mixture of products. We shall come back to diazo compounds in more detail in Chapter 40 diazonium salts will reappear in Chapter 38 where their decomposition will provide the driving force for fragmentation reactions. [Pg.988]


See other pages where Diazo compounds reactions with ketones is mentioned: [Pg.363]    [Pg.450]    [Pg.256]    [Pg.5]    [Pg.205]    [Pg.80]    [Pg.86]    [Pg.423]    [Pg.3]    [Pg.173]    [Pg.1132]    [Pg.825]    [Pg.256]    [Pg.1132]    [Pg.256]    [Pg.909]    [Pg.304]    [Pg.860]    [Pg.1033]    [Pg.1091]    [Pg.82]    [Pg.344]    [Pg.381]    [Pg.619]    [Pg.395]    [Pg.33]    [Pg.147]    [Pg.455]   
See also in sourсe #XX -- [ Pg.608 ]

See also in sourсe #XX -- [ Pg.608 ]




SEARCH



Diazo compounds

Diazo ketone

Diazo ketones reaction

Diazo reaction

Diazo reactions with

Ketones compounds

Ketones diazo compounds

Reaction diazo compounds

Reaction with diazo compound

Reaction with ketone

With diazo compounds

© 2024 chempedia.info