Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diastereoselectivity using boron enolates

To achieve a stereoselective aldol reaction that does not depend on the structural type of the reacting carbonyl compounds, many efforts have been made to use boron enolates. Based on early studies by Mukaiyama et al.8a and Fenzl and K0ster,8b in 1979, Masamune and others reported a highly diastereoselective aldol reaction involving dialkylboron enolates (enol borinates)9... [Pg.51]

The addition of boron enolates to imincs is useful for the construction of anti-fi-amino acid derivatives8. On the other hand, it is possible to control the direction of the diastereoselective addition of enolates from (A)-phenyl alkanethioates with imines9. [Pg.760]

Scheme 2.6 shows some examples of the use of chiral auxiliaries in the aldol and Mukaiyama reactions. The reaction in Entry 1 involves an achiral aldehyde and the chiral auxiliary is the only influence on the reaction diastereoselectivity, which is very high. The Z-boron enolate results in syn diastereoselectivity. Entry 2 has both an a-methyl and a (3-benzyloxy substituent in the aldehyde reactant. The 2,3-syn relationship arises from the Z-configuration of the enolate, and the 3,4-anti stereochemistry is determined by the stereocenters in the aldehyde. The product was isolated as an ester after methanolysis. Entry 3, which is very similar to Entry 2, was done on a 60-kg scale in a process development investigation for the potential antitumor agent (+)-discodermolide (see page 1244). [Pg.119]

The synthesis of the C(17)-C(24) segment also began with a diastereoselective boron enolate aldol addition. The adduct was protected and converted to an aldehyde in sequence H. The terminal diene unit was installed using a y-silylallyl chromium reagent, which generates a (3-hydroxysilane. Peterson elimination using KH then gave the Z-diene. [Pg.1238]

A further step towards improved selectivity in aldol condensations is found in the work of David A. Evans. The work of Evans [3a] [14] is based in some early observations from Meyers laboratory [15] and the fact that boron enolates may be readily prepared under mild conditions from ketones and dialkylboron triflates [16]. Detailed investigations with Al-propionylpyrrolidine (31) indicate that the enolisation process (LDA, THE) affords the enolate 32 with at least 97% (Z>diastereoselection (Scheme 9.8). Finally, the observation that the inclusion of potential chelating centres enhance aldol diastereoselection led Evans to study the boron enolates 34 of A(-acyl-2-oxazolidones (33), which allow not only great diastereoselectivity (favouring the 5yn-isomer) in aldol condensations, but offer a possible solution to the problem of enantioselective total syntheses (with selectivities greater than 98%) of complex organic molecules (see below, 9.3.2), by using a recyclisable chiral auxiliary. [Pg.239]

Catalyzed aldol additions do not generally proceed with high diastereoselectivity at ambient temperature. Improved stereoselectivity can be achieved by using preformed, diastereomerically pure enolates at low temperatures (Entry 5, Table 7.2). This strategy enables the solid-phase preparation of stereochemically defined polyketides. On cross-linked polystyrene, the observed diastereoselectivity in the addition of boron enolates to aldehydes is the same as that in the homogeneous phase reaction [14,18]. [Pg.215]

Asymmetric Mannich reactions provide useful routes for the synthesis of optically active p-amino ketones or esters, which are versatile chiral building blocks for the preparation of many nitrogen-containing biologically important compounds [1-6]. While several diastereoselective Mannich reactions with chiral auxiliaries have been reported, very little is known about enantioselective versions. In 1991, Corey et al. reported the first example of the enantioselective synthesis of p-amino acid esters using chiral boron enolates [7]. Yamamoto et al. disclosed enantioselective reactions of imines with ketene silyl acetals using a Bronsted acid-assisted chiral Lewis acid [8]. In all cases, however, stoichiometric amounts of chiral sources were needed. Asymmetric Mannich reactions using small amounts of chiral sources were not reported before 1997. This chapter presents an overview of catalytic asymmetric Mannich reactions. [Pg.143]

Boron enolates of a-benzyloxy esters.1 The triflate 1 converts alkyl benzyloxy-acetates (2) into the boron enolate, which readily undergoes aldol reactions with high yyn-diastereoselectivity. Somewhat higher syn-selectivity obtains with dicyclopen-tylboryl triflate, whereas use of LDA results in slight anti-selectivity (synlanti=34-37 66-63). Diisopropylethylamine is essential for the aldol reaction. Syn-3 is re-... [Pg.109]

In 1995, Boeckman et al. disclosed a highly diastereoselective aldol reaction using the ligand 79 derived from chiral bicyclic lactam28 (Scheme 2.1z). The imide 80, readily prepared from bicyclic lactam 79 and propionyl chloride, was converted to the boron Z-enolate, which was then treated with a representative series of aldehydes at -40° C for 48 hours. The levels of diastereoselectivity observed in reactions of boron enolate derived from 80 are comparable to those... [Pg.73]

A kinetic study of the Ph2BOH-catalysed reactions of several aldehydes with 2 revealed that the rate of the disappearance of 2 followed first-order kinetics and was independent from the reactivity of the aldehydes used. Taking into account this result, we have proposed the reaction mechanism in which a silyl enol ether is transformed to the corresponding diphenylboryl enolate before the aldol addition step takes place (Scheme 13.1). The high diastereoselectivity is consistent with the mechanism, in which the aldol step proceeds via a chair-like six-membered transition state. The opposite diastereoselectivity in the reaction with the geometrical isomers of the thioketene silyl acetal shown in Table 13.3 also supports the mechanism via the boron enolate, because this trend was also observed in the classical boron enolate-mediated reactions in dry organic solvents. Although we have not yet observed the boron enolates directly under the reaction conditions, this mechanism can explain all of the experimental data obtained and is considered as the most reasonable one. As far as we know, this is the first example of... [Pg.277]

Non-Evans Aldol Reactions. Either the syn- or onri-aldol adducts may be obtained from this family of imide-derived eno-lates, depending upon the specific conditions employed for the reaction. Although the illustrated boron enolate affords the illustrated jyn-aldol adduct in high diastereoselectivity, the addition reactions between this enolate and Lewis acid-coordinated aldehydes afford different stereochemical outcomes depending on the Lewis acid employed (eq 35). Open transition states have been proposed for the Diethylaluminum Chloride mediated, anti-selective reaction. These anfi-aldol reactions have been used in kinetic resolutions of 2-phenylthio aldehydes. ... [Pg.62]

More elaborate ketones incorporating further stereocenters have also proved synthetically useful. The -oxygenated ketone 29 gave rise to highly selective, boron-mediated, aldol reactions [16J (Scheme 9-10). This selectivity was only observed when the unusual chlorophenyl boron enolate was used - a system now known to give high syn diastereoselectivity with a range of ketones [17]. [Pg.255]

Puentes et al. have also used boron-mediated aldol reactions to prepare enantiomerically homogeneous P-lactam moieties. In the presence of a Lewis acid (ZnBra), enantiomerically homogeneous boryl enolate (76) provides adduct (77) with high diastereoselectivity (see acyclic transition state E Scheme 33). [Pg.256]


See other pages where Diastereoselectivity using boron enolates is mentioned: [Pg.38]    [Pg.38]    [Pg.184]    [Pg.774]    [Pg.52]    [Pg.61]    [Pg.197]    [Pg.7]    [Pg.853]    [Pg.855]    [Pg.240]    [Pg.65]    [Pg.128]    [Pg.572]    [Pg.52]    [Pg.229]    [Pg.229]    [Pg.250]    [Pg.412]    [Pg.8]    [Pg.162]    [Pg.91]    [Pg.7]    [Pg.232]    [Pg.302]    [Pg.436]    [Pg.437]    [Pg.232]    [Pg.302]    [Pg.436]    [Pg.437]    [Pg.543]    [Pg.185]    [Pg.188]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



Boron diastereoselective

Boron enolate

Diastereoselectivity boron

Enolates diastereoselective

Using enolates

© 2024 chempedia.info