Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dialkyl anions

An interesting case are the a,/i-unsaturated ketones, which form carbanions, in which the negative charge is delocalized in a 5-centre-6-electron system. Alkylation, however, only occurs at the central, most nucleophilic position. This regioselectivity has been utilized by Woodward (R.B. Woodward, 1957 B.F. Mundy, 1972) in the synthesis of 4-dialkylated steroids. This reaction has been carried out at high temperature in a protic solvent. Therefore it yields the product, which is formed from the most stable anion (thermodynamic control). In conjugated enones a proton adjacent to the carbonyl group, however, is removed much faster than a y-proton. If the same alkylation, therefore, is carried out in an aprotic solvent, which does not catalyze tautomerizations, and if the temperature is kept low, the steroid is mono- or dimethylated at C-2 in comparable yield (L. Nedelec, 1974). [Pg.25]

Carboxyl and nitrile groups are usually introduced in synthesis with commercial carboxylic acid derivatives, nitriles, or cyanide anion. Carbanions can be carboxylated with carbon dioxide (H.F. Ebel, 1970) or dialkyl carbonate (J. Schmidlin, 1957). [Pg.49]

All lation. In alkylation, the dialkyl sulfates react much faster than do the alkyl haHdes, because the monoalkyl sulfate anion (ROSO ) is more effective as a leaving group than a haHde ion. The high rate is most apparent with small primary alkyl groups, eg, methyl and ethyl. Some leaving groups, such as the fluorinated sulfonate anion, eg, the triflate anion, CF SO, react even faster in ester form (4). Against phenoxide anion, the reaction rate is methyl triflate [333-27-7] dimethyl sulfate methyl toluenesulfonate [23373-38-8] (5). Dialkyl sulfates, as compared to alkyl chlorides, lack chloride ions in their products chloride corrodes and requires the use of a gas instead of a Hquid. The lower sulfates are much less expensive than lower bromides or iodides, and they also alkylate quickly. [Pg.198]

Dialkyl and diarylthaHium(III) derivatives are stable, crystalline soHds that melt at 180—300°C. The dimethylthaHium derivatives of CN , CIO, BF, and NO 2 contain linear (CH2)2T1 cations and the free anions (19). In aqueous solutions, they ionize to the (CH2)2T1(H20) ions, except those derivatives containing alkoxide, mercaptide, or amide anions, which yield dimeric stmctures (20,21). [Pg.469]

A number of compounds of the types RBiY2 or R2BiY, where Y is an anionic group other than halogen, have been prepared by the reaction of a dihalo- or halobismuthine with a lithium, sodium, potassium, ammonium, silver, or lead alkoxide (120,121), amide (122,123), a2ide (124,125), carboxylate (121,126), cyanide (125,127), dithiocarbamate (128,129), mercaptide (130,131), nitrate (108), phenoxide (120), selenocyanate (125), silanolate (132), thiocyanate (125,127), or xanthate (133). Dialkyl- and diaryUialobismuthines can also be readily converted to secondary bismuthides by treatment with an alkali metal (50,105,134) ... [Pg.132]

The NOBS system undergoes an additional reaction that forms a diacyl peroxide as a result of the nucleophilic attack of the peracid anion on the NOBS precursor as shown in equation 21. This undesirable side reaction can be minimized by the use of an excess molar quantity of hydrogen peroxide (91,96) or by the use of shorter dialkyl chain acid derivatives. However, the use of these acid derivatives also appears to result in less efficient bleaching. The dependence of the acid group on the side product formation is apparentiy the result of the proximity of the newly formed peracid to unreacted NOBS in the micellar environment (91). A variety of other peracid precursor stmctures can be found (97—118). [Pg.147]

In the alkylation of enolate anions, a mixture of mono- and polyalky lation produets is usually obtained, and when enolization of a di-a-methylene ketone is possible toward both sides, a mixture of di-a- and a,a -dialkylation products ean be expeeted. Thus the enamine alkylation sequenee beeomes partieularly attractive when eontrolled monoalkylation is imperative beeause of difficulties in separation of a mixture of alkylation produets. One of its first synthetie applications was in the reaetions of /8-tetralones with alkyl halides. Yields in exeess of 80% were usually found 238-243) in these reaetions, which make valuable intermediates for steroid and diterpene syntheses more aecessible. [Pg.347]

Thus the reactions of cyclic or acyclic enamines with acrylic esters or acrylonitrile can be directed to the exclusive formation of monoalkylated ketones (3,294-301). The corresponding enolate anion alkylations lead preferentially to di- or higher-alkylation products. However, by proper choice of reaction conditions, enamines can also be used for the preferential formation of higher alkylation products, if these are desired. Such reactions are valuable in the a substitution of aldehydes, which undergo self-condensation in base-catalyzed reactions (117,118). Monoalkylation products are favored in nonhydroxylic solvents such as benzene or dioxane, whereas dialkylation products can be obtained in hydroxylic solvents such as methanol. The difference in products can be ascribed to the differing fates of an initially formed zwitterionic intermediate. Collapse to a cyclobutane takes place in a nonprotonic solvent, whereas protonation on the newly introduced substitutent and deprotonation of the imonium salt, in alcohol, leads to a new enamine available for further substitution. [Pg.359]

Even polyalkoxy-s-triazines are quite prone to nucleophilic substitution. For example, 2,4,6-trimethoxy-s-triazine (320) is rapidly hydrolyzed (20°, dilute aqueous alkali) to the anion of 4,6-dimethoxy-s-triazin-2(l )-one (331). This reaction is undoubtedly an /S jvr-4r2 reaction and not an aliphatic dealkylation. The latter type occurs with anilines at much higher temperatures (150-200°) and with chloride ion in the reaction of non-basified alcohols with cyanuric chloride at reflux temperatures. The reported dealkylation with methoxide has been shown to be hydrolysis by traces of water present. Several analogous dealkylations by alkoxide ion, reported without evidence for the formation of the dialkyl ether, are all associated with the high reactivity of the alkoxy compounds which ai e, in fact, hydrolyzed by usually tolerable traces of water. Brown ... [Pg.304]

The salts of alkyl xanthates, A/,A/ -di-substituted dithio-carbamates and dialkyidithiophosphates [26] are effective peroxide decomposers. Since no active hydrogen is present in these compounds, an electron-transfer mechanism was suggested. The peroxide radical is capable of abstracting an electron from the electron-rich sulfur atom and is converted into a peroxy anion as illustrated below for zinc dialkyl dithiocarbamate [27] ... [Pg.401]

Alkylation of corrole anions (RI, K2C03, acetone) gives a mixture of A21- and A22-alkylated corroles 2 and 3, respectively, in which the A2 -product predominates.6 8i At elevated temperatures bisalkylated JV.A-dialkyl corroles 4 are formed. [Pg.670]

Ethyl (bornylideneamino)acetate (2) and the imines of (-)-(lf ,2, 5 )-2-hydroxy-3-pinanone and glycine, alanine and norvaline methyl esters were particularly successful as Michael donors. The chiral azaallyl anions, derived from these imines by deprotonation with lithium diisopropylamide in THF at — 80 C, add to various a,/i-unsaturated esters with modest to high diastereoselectivity (see Section 1.5.2.4.2.2.5.). Thus, starting with the imine 2, (R1 = CH,) and ethyl ( )-2-butcnoate, the a,/i-dialkylated glutamate derivative 3 is obtained as a single diastercomer in 90% yield91-92. [Pg.964]

B. Radical Anions of Dialkyl Sulfoxides and Dialkyl Sulfones.1053... [Pg.1047]

The radical anions of dialkyl sulfoxides (or sulfones) may be obtained by direct capture of electron during y-irradiation. It was shown that electron capture by several electron acceptors in the solid state gave anion adducts 27. It was concluded276 that these species are not properly described as radical anions but are genuine radicals which, formed in a solid state cavity, are unable to leave the site of the anions and exhibit a weak charge-transfer interaction which does not modify their conformation or reactivity appreciably, but only their ESR spectra. For hexadeuteriodimethyl sulfoxide in the solid state, electron capture gave this kind of adduct 278,28 (2H isotopic coupling 2.97 G is less than 3.58 G normally found for -CD3). [Pg.1053]

In addition to their poor solubility in water, alkyl phosphate esters and dialkyl phosphate esters are further characterized by sensitivity to water hardness [37]. A review of the preparation, properties, and uses of surface-active anionic phosphate esters prepared by the reactions of alcohols or ethoxylates with tetra-phosphoric acid or P4O10 is given in Ref. 3. The surfactant properties of alkyl phosphates have been investigated [18,186-188]. The critical micelle concentration (CMC) of the monoalkyl ester salts is only moderate see Table 6 ... [Pg.591]

In closely related studies, the molecular and crystal structures of lithium, sodium and potassium N,N -di(p-tolyl)formamidinate and N,N -di(2,6-dialkyl-phenyl)formamidinate complexes have been elucidated. These showed the anions to be versatile ligands for alkali metals, exhibiting a wide variety of binding modes. ... [Pg.196]

The stable P-unsubstituted phosphinous amide H2PN(SiMe3)2 has been shown to suffer the nucleophilic displacement of the disilazane moiety by the action of thiols R-SH giving the phosphinous thioesters R-S-PH2 [13]. For the sake of brevity we shall not comment on other relevant reactions of AT-silyl phosphinous amides, such as the anionic P-silylation [115] and P-alkylation [22], the consecutive dialkylation of PH derivatives [18] and the fluorodesily-lation of P-fluoro-JV-silyl derivatives [140]. [Pg.94]

Pyridylphosphonic acid derivatives (68) have been prepared by addition of dialkyl phosphite anion to A-alkoxypyridinium salts. Similar compounds, it is reported, are formed from trialkyl phosphites with... [Pg.109]

The ratio ARH/ARj (monoalkylation/dialkylation) should depend principally on the electrophilic capability of RX. Thus it has been shown that in the case of t-butyl halides (due to the chemical and electrochemical stability of t-butyl free radical) the yield of mono alkylation is often good. Naturally, aryl sulphones may also be employed in the role of RX-type compounds. Indeed, the t-butylation of pyrene can be performed when reduced cathodically in the presence of CgHjSOjBu-t. Other alkylation reactions are also possible with sulphones possessing an ArS02 moiety bound to a tertiary carbon. In contrast, coupling reactions via redox catalysis do not occur in a good yield with primary and secondary sulphones. This is probably due to the disappearance of the mediator anion radical due to proton transfer from the acidic sulphone. [Pg.1019]


See other pages where Dialkyl anions is mentioned: [Pg.372]    [Pg.372]    [Pg.372]    [Pg.372]    [Pg.20]    [Pg.24]    [Pg.119]    [Pg.386]    [Pg.254]    [Pg.198]    [Pg.730]    [Pg.202]    [Pg.212]    [Pg.220]    [Pg.234]    [Pg.366]    [Pg.14]    [Pg.211]    [Pg.315]    [Pg.780]    [Pg.1019]    [Pg.227]    [Pg.101]    [Pg.106]    [Pg.110]    [Pg.315]    [Pg.780]   
See also in sourсe #XX -- [ Pg.41 ]

See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Dialkyl anions oxidative addition

© 2024 chempedia.info