Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diagonal local approximation

This approach was employed by Peralta et al. [649,661] and explored in detail by Thar and Kirchner [668] for the low-order DKH method. We refer to it as the diagonal local approximation to the Hamiltonian (DLH). It is clear that the DLH approximation can be applied to all relativistic exact-decoupling approaches. Obviously, the DLH approximation will work best at large interatomic distances. For example, it is a good approximation for heavy-atom molecules in solution for which it was conceived in Ref. [668]. Then, A represents the group of atoms that form one of the solute and/or solvent molecules. [Pg.554]

The eigenvalues were obtained by diagonalization of the Hessian. Sueh diagonalization corresponds to a rotation of the local coordinate system (cf., p. 359). Imagine a two-dimensional surface that at the minimum could be locally approximated by an ellipsoidal valley. The diagonalization means such a rotation of the coordinate system x, y that both axes of the ellipse coincide with the new axes x, y (as discussed in Chapter 7). On the other hand, if our surface locally resembled a cavalry saddle, diagonalization would lead to such a rotation of the coordinate system that one axis would be directed along the horse, and the other across. ... [Pg.889]

A straightforward idea for a local approximation to the heavy-heavy blocks is to transform only the heavy-atom block-diagonal blocks of the relativistic Hamiltonian matrix H,... [Pg.554]

The basic self-consistent field (SCF) procedure, i.e., repeated diagonalization of the Fock matrix [26], can be viewed, if sufficiently converged, as local optimization with a fixed, approximate Hessian, i.e., as simple relaxation. To show this, let us consider the closed-shell case and restrict ourselves to real orbitals. The SCF orbital coefficients are not the... [Pg.2339]

In the derivation used here, it is clear that two approximations have been made—the configurations are incoherent, and the nuclear functions remain localized. Without these approximations, the wave function fonn Eq. (C.l) could be an exact solution of the Schrddinger equation, as it is in 2D MCTDH form (in fact is in what is termed a natural orbital form as only diagonal configurations are included [20]). [Pg.318]

Effect of diagonal-off-diagonal dynamic disorder (D-off-DDD). The polarization fluctuations and the local vibrations give rise to variation of the electron densities in the donor and the acceptor, i.e., they lead to a modulation of the electron wave functions A and B. This leads to a modulation of the overlapping of the electron clouds of the donor and the acceptor and hence to a different transmission coefficient from that calculated in the approximation of constant electron density (ACED). This modulation may change the path of transition on the potential energy surfaces. [Pg.103]

The obstacle to simultaneous quantum chemistry and quantum nuclear dynamics is apparent in Eqs. (2.16a)-(2.16c). At each time step, the propagation of the complex coefficients, Eq. (2.11), requires the calculation of diagonal and off-diagonal matrix elements of the Hamiltonian. These matrix elements are to be calculated for each pair of nuclear basis functions. In the case of ab initio quantum dynamics, the potential energy surfaces are known only locally, and therefore the calculation of these matrix elements (even for a single pair of basis functions) poses a numerical difficulty, and severe approximations have to be made. These approximations are discussed in detail in Section II.D. In the case of analytic PESs it is sometimes possible to evaluate these multidimensional integrals analytically. In either case (analytic or ab initio) the matrix elements of the nuclear kinetic energy... [Pg.449]

Starting from the normal mode approximation, one can introduce anharmonicity in different ways. Anharmonic perturbation theory [206] and local mode models [204] may be useful in some cases, where anharmonic effects are small or mostly diagonal. Vibrational self-consistent-field and configuration-interaction treatments [207, 208] can also be powerful and offer a hierarchy of approximation levels. Even more rigorous multidimensional treatments include variational calculations [209], diffusion quantum Monte Carlo, and time-dependent Hartree approaches [210]. [Pg.24]

Suppose that we have two different illuminants. Each illuminant defines a local coordinate system inside the three- dimensional space of receptors as shown in Figure 3.23. A diagonal transform, i.e. a simple scaling of each color channel, is not sufficient to align the coordinate systems defined by the two illuminants. A simple scaling of the color channels can only be used if the response functions of the sensor are sufficiently narrow band, i.e. they can be approximated by a delta function. [Pg.64]

As an example, we consider the multiphonon relaxation of a local mode caused by an anharmonic interaction with a narrow phonon band. We suppose that the mode is localized on an atom and take into account two diagonal elements of the Green function which stand for the contribution of two nearest atoms of the lattice to the interaction the non-diagonal elements are usually much smaller [16] and approximate the density of states of the phonon band by the parabolic distribution... [Pg.158]

The relaxation of the structure in the KMC-DR method was done using an approach based on the density functional theory and linear combination of atomic orbitals implemented in the Siesta code [97]. The minimum basis set of localized numerical orbitals of Sankey type [98] was used for all atoms except silicon atoms near the interface, for which polarization functions were added to improve the description of the SiOx layer. The core electrons were replaced with norm-conserving Troullier-Martins pseudopotentials [99] (Zr atoms also include 4p electrons in the valence shell). Calculations were done in the local density approximation (LDA) of DFT. The grid in the real space for the calculation of matrix elements has an equivalent cutoff energy of 60 Ry. The standard diagonalization scheme with Pulay mixing was used to get a self-consistent solution. In the framework of the KMC-DR method, it is not necessary to perform an accurate optimization of the structure, since structure relaxation is performed many times. [Pg.513]


See other pages where Diagonal local approximation is mentioned: [Pg.556]    [Pg.667]    [Pg.667]    [Pg.556]    [Pg.667]    [Pg.667]    [Pg.8]    [Pg.553]    [Pg.443]    [Pg.444]    [Pg.428]    [Pg.195]    [Pg.63]    [Pg.117]    [Pg.460]    [Pg.462]    [Pg.4]    [Pg.209]    [Pg.24]    [Pg.61]    [Pg.90]    [Pg.131]    [Pg.46]    [Pg.61]    [Pg.28]    [Pg.214]    [Pg.120]    [Pg.650]    [Pg.340]    [Pg.351]    [Pg.141]    [Pg.209]    [Pg.306]    [Pg.162]    [Pg.129]    [Pg.194]    [Pg.199]    [Pg.574]    [Pg.457]   


SEARCH



Diagonal

Diagonal local approximation Hamiltonian

Diagonalization

Local approximation

© 2024 chempedia.info