Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diacids oxidation

Fluorinated ether-containing dicarboxyhc acids have been prepared by direct fluorination of the corresponding hydrocarbon (17), photooxidation of tetrafluoroethylene, or by fluoride ion-cataly2ed reaction of a diacid fluoride such as oxalyl or tetrafluorosuccinyl fluorides with hexafluoropropylene oxide (46,47). Equation 8 shows the reaction of oxalyl fluoride with HEPO. A difunctional ether-containing acid fluoride derived from HEPO contains regular repeat units of perfluoroisopropoxy group and is terminated by two alpha-branched carboxylates. [Pg.312]

Chemical Properties. Trimethylpentanediol, with a primary and a secondary hydroxyl group, enters into reactions characteristic of other glycols. It reacts readily with various carboxyUc acids and diacids to form esters, diesters, and polyesters (40). Some organometaUic catalysts have proven satisfactory for these reactions, the most versatile being dibutyltin oxide. Several weak bases such as triethanolamine, potassium acetate, lithium acetate, and borax are effective as stabilizers for the glycol during synthesis (41). [Pg.373]

Maleic anhydride and the two diacid isomers were first prepared in the 1830s (1) but commercial manufacture did not begin until a century later. In 1933 the National Aniline and Chemical Co., Inc., installed a process for maleic anhydride based on benzene oxidation using a vanadium oxide catalyst (2). Maleic acid was available commercially ia 1928 and fumaric acid production began in 1932 by acid-catalyzed isomerization of maleic acid. [Pg.447]

The diacids for these polymers are prepared via different processes. A2elaic acid [123-99-9] for nylon-6,9 [28757-63-3] is generally produced from naturally occurring fatty acids via oxidative cleavage of a double bond in the 9-position, eg, from oleic acid [112-80-1] ... [Pg.236]

The diacid components for the manufacture of poly(y -phenyleneisophthalamide) and poly(p-phenyleneterephthalamide) are produced by one of two processes. In the first, the diacid chlorides are produced by the oxidation of / -xylene [108-38-3] or -xylene [106-42-3] followed by the reaction of the diacids with phosgene [75-44-5]. In the second, process m- or -xylene reacts with chlorine initiated by ultraviolet light to form the m- or Nhexachloroxylene. This then reacts with the respective aromatic dicarboxyUc acid to form the diacid chloride. [Pg.239]

Azelaic, sebacic, dodecanedioic, and brassyhc acids may be used in copolyetheresteramides (111). Two patents describe additional apphcations for the C-9—C-40 diacids for the preparation of polyester carbonates (112), and the copolymerization of epoxides and carbon dioxide by reaction of either glutaric or adipic acids with zinc oxide (113). [Pg.64]

Dicarboxylic acids have been prepared by the stepwise acylation and Wolff-Kishner reduction of thiophene or di-2-thienylmethane with ester chlorides of dicarboxylic acids. Another method consists of the AICI3 catalyzed acylation of w-phenylalkylthiophenes which occurs both in the free thiophenic position and in the para position of the ring (226). Hypochlorite oxidation and desulfurization then give diacides such as (227)... [Pg.111]

The use of lead tetraacetate to carry out oxidative bisdecarboxylation of diacids has been found to be a highly useful procedure when used in conjunction with the Diels-Alder addition of maleic anhydride to dienes, the latter process providing a ready source of 1,2-dicarboxylic acids. The general pattern is illustrated in the reaction... [Pg.14]

Interfacial polycondensation between a diacid chloride and hexamethylenediamine in the presence of small amounts of ACPC also yield polymeric azoamid, which is a macroazo initiator.[27] In this manner, azodicarbox-ylate-functional polystyrene [28], macroazonitriles from 4,4 -azobis(4-cyano-n-pentanoyl) with diisocyanate of polyalkylene oxide [29], polymeric azo initiators with pendent azo groups [3] and polybutadiene macroazoinitiator [30] are macroazoinitiators that prepare block and graft copolymers. [Pg.728]

Cyclododecatriene is a precursor for dodecane-dioic acid through a hydrogenation step followed hy oxidation. The diacid is a monomer for the production of nylon 6/12. [Pg.260]

Faraday, in 1834, was the first to encounter Kolbe-electrolysis, when he studied the electrolysis of an aqueous acetate solution [1], However, it was Kolbe, in 1849, who recognized the reaction and applied it to the synthesis of a number of hydrocarbons [2]. Thereby the name of the reaction originated. Later on Wurtz demonstrated that unsymmetrical coupling products could be prepared by coelectrolysis of two different alkanoates [3]. Difficulties in the coupling of dicarboxylic acids were overcome by Crum-Brown and Walker, when they electrolysed the half esters of the diacids instead [4]. This way a simple route to useful long chain l,n-dicarboxylic acids was developed. In some cases the Kolbe dimerization failed and alkenes, alcohols or esters became the main products. The formation of alcohols by anodic oxidation of carboxylates in water was called the Hofer-Moest reaction [5]. Further applications and limitations were afterwards foimd by Fichter [6]. Weedon extensively applied the Kolbe reaction to the synthesis of rare fatty acids and similar natural products [7]. Later on key features of the mechanism were worked out by Eberson [8] and Utley [9] from the point of view of organic chemists and by Conway [10] from the point of view of a physical chemist. In Germany [11], Russia [12], and Japan [13] Kolbe electrolysis of adipic halfesters has been scaled up to a technical process. [Pg.92]

The photo-Kolbe reaction is the decarboxylation of carboxylic acids at tow voltage under irradiation at semiconductor anodes (TiO ), that are partially doped with metals, e.g. platinum [343, 344]. On semiconductor powders the dominant product is a hydrocarbon by substitution of the carboxylate group for hydrogen (Eq. 41), whereas on an n-TiOj single crystal in the oxidation of acetic acid the formation of ethane besides methane could be observed [345, 346]. Dependent on the kind of semiconductor, the adsorbed metal, and the pH of the solution the extent of alkyl coupling versus reduction to the hydrocarbon can be controlled to some extent [346]. The intermediacy of alkyl radicals has been demonstrated by ESR-spectroscopy [347], that of the alkyl anion by deuterium incorporation [344]. With vicinal diacids the mono- or bisdecarboxylation can be controlled by the light flux [348]. Adipic acid yielded butane [349] with levulinic acid the products of decarboxylation, methyl ethyl-... [Pg.140]

Cyclooctadiene is reacted with bromine to make fire-retardants. Cyclododecane is oxidized with air and then nitric acid to make a diacid containing 12 carbons. This acid is used to prepare some types of nylon, and its esters are used in synthetic lubricating oils. [Pg.137]

The product is 2,7-octadien-l-oI which can be dehydrogenated/hydrogenated internally to give 7-octenal, which can be hydroformylated to the dialdehyde, nonadialdehyde, and then hydrogenated to nonadiol. The initial product can be hydrogenated to 1-octanol the dialdehyde can be oxidized to the diacid. The catalyst used is Pd modified with the Li salt of monosulphonated triphenylphosphine. [Pg.141]

A reaction mechanism with Fe304 as catalyst has been proposed [68], in agreement with previous work concerning decarboxylation of acids in the presence of a metal oxide [83]. After the transient formation of iron(II) and iron(III) carboxylates from the diacid and Fe304 (with elimination of water), the thermal decarboxylation of these salts should give the cyclic ketone and regeneration of the catalyst. [Pg.244]

Pyridoxine (vitamin B-6,274) was irradiated in neutral solution in the presence of oxygen at 254 nm to give the diacid (275). It was possible to identify all partial and fully oxidized intermediates to (275) at both the 4- and 5-positions. When the irradiation was performed in the absence of oxygen, only the dimer (277) was obtained [170],... [Pg.96]

The hydrogenation of HMF in the presence of metal catalysts (Raney nickel, supported platinum metals, copper chromite) leads to quantitative amounts of 2,5-bis(hydroxymethyl)furan used in the manufacture of polyurethanes, or 2,5-bis(hydroxymethyl)tetrahydrofuran that can be used in the preparation of polyesters [30]. The oxidation of HMF is used to prepare 5-formylfuran-2-carboxylic acid, and furan-2,5-dicarboxylic acid (a potential substitute of terephthalic acid). Oxidation by air on platinum catalysts leads quantitatively to the diacid. [32], The oxidation of HMF to dialdehyde was achieved at 90 °C with air as oxidizing in the presence of V205/Ti02 catalysts with a selectivity up to 95% at 90% conversion [33]. [Pg.62]


See other pages where Diacids oxidation is mentioned: [Pg.1131]    [Pg.1131]    [Pg.202]    [Pg.335]    [Pg.64]    [Pg.504]    [Pg.494]    [Pg.233]    [Pg.233]    [Pg.295]    [Pg.239]    [Pg.69]    [Pg.246]    [Pg.257]    [Pg.139]    [Pg.743]    [Pg.15]    [Pg.75]    [Pg.46]    [Pg.595]    [Pg.68]    [Pg.156]    [Pg.605]    [Pg.85]    [Pg.169]    [Pg.315]    [Pg.79]    [Pg.103]    [Pg.1578]    [Pg.118]    [Pg.308]    [Pg.241]    [Pg.97]    [Pg.275]    [Pg.30]   
See also in sourсe #XX -- [ Pg.1049 ]




SEARCH



Diacid

Diacids

© 2024 chempedia.info