Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass detector response

Mass recovery of MA samples was checked by using the concentration (DRl) detector response (mass/area ratio) of the corresponding LB arm it was assumed that the detector response was identical for compositionally similar samples. Corrections for 38% and 9% sample loss were applied to the "mass injected" in the SEC/LALLS data for (Sl-1) DVB and (Sl-2) DVB, respectively. [Pg.304]

These combined HDF and GPC separations require the use of detectors such as static light scattering or viscometers to help sort out the convoluted elution profiles seen in those type of experiments. It should also be remembered in these situations that the typical refractive index or ultraviolet detector responses may not be representative of the actual mass fraction of insolubles eluting from the column because of the significant light scattering that can occur with those large particles in the detector cell. [Pg.553]

To enable qnantitative measurements to be made, the analyst requires the ability to determine the areas or heights of the detector responses of analyte(s) and any internal standard that may be present and then, from these figures, to derive the amount(s) of analyte(s) present in the unknown sample. The software provided with the mass spectrometer allows this to be done with a high degree of automation if the analyst so desires. [Pg.84]

A solution oontaining 0.5 mg mM of an analyte gives a detector response (based on peak height) of 48 3 arbitrary units when analysed by LC-MS at a flow rate of 0.75 ml min". At a flow rate of 1.00 ml min", the detector response was 49 3 arbitrary units. Is the mass speotrometer behaving as a conoentration- or mass-flow-sensitive detector ... [Pg.194]

The spectrometer is behaving as a concentration-sensitive detector as the signal intensity remains constant as the flow rate increases. If it were mass-sensitive, the detector response would increase. [Pg.296]

Figure 8.6 Positive ion LD TOF mass spectra of P. falciparum parasite sample (upper trace), and a control (uninfected blood) sample (lower trace). Protocol D is used for sample preparation. Both samples—in vitro cultured P. falciparum parasites in whole blood, and the whole blood control—are diluted to 5% hematocrit (10-fold) in PBS buffer. In the infected sample the estimated number of deposited parasites per sample well is approximately 100. A commercial LD TOF system is used, and both spectra are normalized to the same (40 mV) detector response value. Each trace represents the average of one hundred single laser shot spectra obtained from linear scanning of an individual well (no data smoothing). The characteristic fingerprint ions of detected heme in the upper trace are denoted. Figure 8.6 Positive ion LD TOF mass spectra of P. falciparum parasite sample (upper trace), and a control (uninfected blood) sample (lower trace). Protocol D is used for sample preparation. Both samples—in vitro cultured P. falciparum parasites in whole blood, and the whole blood control—are diluted to 5% hematocrit (10-fold) in PBS buffer. In the infected sample the estimated number of deposited parasites per sample well is approximately 100. A commercial LD TOF system is used, and both spectra are normalized to the same (40 mV) detector response value. Each trace represents the average of one hundred single laser shot spectra obtained from linear scanning of an individual well (no data smoothing). The characteristic fingerprint ions of detected heme in the upper trace are denoted.
O. Vorm and P. Roepstorff. Detector Bias Gating for Improved Detector Response and Calibration in Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. J. Mass Spectrom., 31(1996) 351-356. [Pg.86]

The significant intrinsic limitation of SEC is the dependence of retention volumes of polymer species on their molecular sizes in solution and thus only indirectly on their molar masses. As known (Sections 16.2.2 and 16.3.2), the size of macromolecnles dissolved in certain solvent depends not only on their molar masses but also on their chemical structure and physical architecture. Consequently, the Vr values of polymer species directly reflect their molar masses only for linear homopolymers and this holds only in absence of side effects within SEC column (Sections 16.4.1 and 16.4.2). In other words, macromolecnles of different molar masses, compositions and architectures may co-elute and in that case the molar mass values directly calculated from the SEC chromatograms would be wrong. This is schematically depicted in Figure 16.10. The problem of simultaneous effects of two or more molecular characteristics on the retention volumes of complex polymer systems is further amplifled by the detection problems (Section 16.9.1) the detector response may not reflect the actual sample concentration. This is the reason why the molar masses of complex polymers directly determined by SEC are only semi-quantitative, reflecting the tendencies rather than the absolute values. To obtain the quantitative molar mass data of complex polymer systems, the coupled (Section 16.5) and two (or multi-) dimensional (Section 16.7) polymer HPLC techniques must be engaged. [Pg.475]

For a detector to be of use in quantitative analysis, the signal output should be linear with concentration for a concentration-sensitive detector and with mass for a mass-sensitive detector. Some detectors have an additional time constant purposely introduced to remove the high-frequency noise. This should always taken into consideration, since a slow detector response can significantly broaden and attenuate chromatographic peaks relative to those actually sensed. Moreover, a versatile detector should have a wide linear dynamic range so that major and trace components can be determined in a single analysis, over a wide concenua-tion range. [Pg.696]

GC detectors can be grouped into concentration-sensitive detectors and mass-sensitive detectors. The signal from a concentration-sensitive detector is related to the concentration of solute in the detector, which does not usually destroy the sample. Mass-sensitive detectors usually destroy the sample, and the signal is related to the rate at which solute molecules enter the detector. The response of a mass-sensitive detector is unaffected by make-up gas, while that of a concentration-sensitive detector will lower with make-up gas. A summary of some important characteristics of the GC detectors specifically used in drug residue analysis is presented in Table 23.1. [Pg.703]

FID is mass-sensitive rather than concentration-sensitive detector this gives the advantage that changes in mobile phase flow rate do not affect detector response. It offers high sensitivity, a large linear response range, and low noise. Its precision is high and is not susceptible to contamination from dirty samples... [Pg.703]

Leggett et al (Refs 22 23) used a similar technique, except that their apparatus was static . TNT samples were placed in a 125ml vial equipped with silicone rubber septum cap. The vial was thermostatted and the sample and its vapor were allowed to equilibrate for 2—4 weeks. Vapor was withdrawn from the head-space with a stainless steel syringe and injected into a gas chromatograph. The concn of TNT in the headspace vapor was determined by manual triangulation of the peak, giving peak area/ volume, and dividing by the detector response factor (peak area/mass), as determined by injection of known quantities of TNT dissolved in benzene... [Pg.170]

Equation C tells us the radius of curvature of the path traveled by an ion with mass m and charge z. The radius of curvature is fixed by the geometry of the hardware. Ions can be selected to reach the detector by adjusting the magnetic field, B, or the accelerating voltage, V. Normally, B is varied to select ions and V is fixed near 3 000 V. Transmission of ions and detector response both decrease when V is decreased. [Pg.476]


See other pages where Mass detector response is mentioned: [Pg.331]    [Pg.331]    [Pg.366]    [Pg.85]    [Pg.34]    [Pg.184]    [Pg.313]    [Pg.718]    [Pg.42]    [Pg.49]    [Pg.150]    [Pg.211]    [Pg.472]    [Pg.155]    [Pg.175]    [Pg.18]    [Pg.316]    [Pg.220]    [Pg.296]    [Pg.472]    [Pg.494]    [Pg.16]    [Pg.186]    [Pg.247]    [Pg.133]    [Pg.474]    [Pg.495]    [Pg.574]    [Pg.701]   
See also in sourсe #XX -- [ Pg.184 ]




SEARCH



Detector Responsivity

Mass detector

© 2024 chempedia.info