Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectrometer, desorption

The development by Muller (393) of the field ion microscope gave a considerable thrust to studying surface structures. In a recent modification of this technique, Panitz (394) designed a field desorption spectrometer that promises determination of the crystallographic distribution of species on metal surfaces. Secondary ion mass spectroscopy can also provide some quantitative information of surface species by sputtering atoms with an inert gas ion beam and detecting them by mass spectrometry. Submonolayers of adsorbed gases can be studied by this method (395). [Pg.308]

This limitation can be overcome by separating the heating and measuring function as in the desorption spectrometer, shown in Fig. 27, which was suggested by Rodbell and employed in the 1st quantitative flash desorption studies (6). Here the sample is heated by direct current,... [Pg.298]

Fig. 27. Desorption spectrometer using 10 ke bridge (6). Rlt Rt, Rt are part of standard impedance bridge C = 30 p/, Ot = 0-100 pp/. Fig. 27. Desorption spectrometer using 10 ke bridge (6). Rlt Rt, Rt are part of standard impedance bridge C = 30 p/, Ot = 0-100 pp/.
A connnon feature of all mass spectrometers is the need to generate ions. Over the years a variety of ion sources have been developed. The physical chemistry and chemical physics communities have generally worked on gaseous and/or relatively volatile samples and thus have relied extensively on the two traditional ionization methods, electron ionization (El) and photoionization (PI). Other ionization sources, developed principally for analytical work, have recently started to be used in physical chemistry research. These include fast-atom bombardment (FAB), matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ES). [Pg.1329]

Thenual desorption spectroscopy (TDS) or temperature progranuned desorption (TPD), as it is also called, is a simple and very popular teclmique in surface science. A sample covered with one or more adsorbate(s) is heated at a constant rate and the desorbing gases are detected with a mass spectrometer. If a reaction takes place diirmg the temperature ramp, one speaks of temperature programmed reaction spectroscopy (TPRS). [Pg.1862]

TPD is frequently used to detenuine (relative) surface coverages. The area below a TPD spectrum of a certain species is proportional to the total amount that desorbs. In this way one can detennine uptake curves that correlate gas exposure to surface coverage. If tire pumping rate of the UHV system is sufiBciently high, the mass spectrometer signal for a particular desorption product is linearly proportional to the desorption rate of the adsorbate [20, 21] ... [Pg.1863]

There are two common occasions when rapid measurement is preferable. The first is with ionization sources using laser desorption or radionuclides. A pulse of ions is produced in a very short interval of time, often of the order of a few nanoseconds. If the mass spectrometer takes 1 sec to attempt to scan the range of ions produced, then clearly there will be no ions left by the time the scan has completed more than a few nanoseconds (ion traps excluded). If a point ion detector were to be used for this type of pulsed ionization, then after the beginning of the scan no more ions would reach the collector because there would not be any left The array collector overcomes this difficulty by detecting the ions produced all at the same instant. [Pg.209]

In field ionization (or field desorption), application of a large electric potential to a surface of high curvature allows a very intense electric field to be generated. Such positive or negative fields lead to electrons being stripped from or added to molecules lying on the surface. The positive or negative molecular ions so produced are mass measured by the mass spectrometer. [Pg.387]

Tandem mass spectrometry (MS/MS) is a method for obtaining sequence and structural information by measurement of the mass-to-charge ratios of ionized molecules before and after dissociation reactions within a mass spectrometer which consists essentially of two mass spectrometers in tandem. In the first step, precursor ions are selected for further fragmentation by energy impact and interaction with a collision gas. The generated product ions can be analyzed by a second scan step. MS/MS measurements of peptides can be performed using electrospray or matrix-assisted laser desorption/ionization in combination with triple quadruple, ion trap, quadrupole-TOF (time-of-flight), TOF-TOF or ion cyclotron resonance MS. Tandem... [Pg.1191]

Figure 2.2. Thermal desorption spectra of carbon monoxide, measured mass spectrometically at mass 28 (atomic units, a.u.), on a platinum (100) surface upon which potassium has been pre-adsorbed to a surface coverage of 0K.7 Reprinted with permission from Elsevier Science. Figure 2.2. Thermal desorption spectra of carbon monoxide, measured mass spectrometically at mass 28 (atomic units, a.u.), on a platinum (100) surface upon which potassium has been pre-adsorbed to a surface coverage of 0K.7 Reprinted with permission from Elsevier Science.
Only analytes possessing some degree of volatility, however, can be transferred into the mass spectrometer by direct desorption/vaporization from the... [Pg.136]

The penultimate example of macrocycles based on phenyl and acetylenic units has been the very recent report by Tobe [801 and Rubin [81] of cyclophane 134. Both groups generated 134 in the mass spectrometer by laser desorption of hexa-protected polyynes 135 (robust) and 136 (unstable), respectively (Scheme 31). [Pg.124]

Secondary ion mass spectrometry (SIMS) is by far the most sensitive surface technique, but also the most difficult to quantify. When a surface is exposed to a beam of ions (Ar", 0.5-5 keV), energy is deposited in the surface region of the sample by a collisional cascade. Some of the energy will return to the surface and stimulate the ejection (desorption) of atoms, ions, and multi-atomic clusters. In SIMS, positive or negative secondary ions are detected directly with a quadrupole mass spectrometer. [Pg.150]

The apparatuses used for the studies of both ammonia synthesis emd hydrodesulfurization were almost identical, consisting of a UHV chamber pumped by both ion and oil diffusion pumps to base pressures of 1 x10 " Torr. Each chamber was equipped with Low Energy Electron Diffraction optics used to determine the orientation of the surfaces and to ascertain that the surfaces were indeed well-ordered. The LEED optics doubled as retarding field analyzers used for Auger Electron Spectroscopy. In addition, each chamber was equipped with a UTI 100C quadrupole mass spectrometer used for analysis of background gases and for Thermal Desorption Spectroscopy studies. [Pg.155]

The usual method of detecting the desorbed molecules in TPR and laser desorption is with a quadrupole mass spectrometer placed a few centimeters from the surface of the crystal. The use of a quadrupole mass spectrometer limits the experiment in several... [Pg.243]

The SIMS system is mounted on a UHV spectrometer which also has XPS, UPS, LEED and thermal desorption capabilities ( ). Heating is achieved by electron bombardment from a filament mounted on the manipulator behind the sample. Cooling is achieved by circulating liquid N2 or He. Temperatures of 25K can be reached. The samples used, Ni(lOO), Cu(17%) Ni(83%) (100) and (111) and Ag(lll) were oriented within 1 and cleaned in situ by standard heating and Ar ion sputtering procedures. [Pg.319]

Specific surface areas of the catalysts used were determined by nitrogen adsorption (77.4 K) employing BET method via Sorptomatic 1900 (Carlo-Erba). X-ray difiraction (XRD) patterns of powdered catalysts were carried out on a Siemens D500 (0 / 20) dififactometer with Cu K monochromatic radiation. For the temperature-programmed desorption (TPD) experiments the catalyst (0.3 g) was pre-treated at diflferent temperatures (100-700 °C) under helium flow (5-20 Nml min ) in a micro-catalytic tubular reactor for 3 hours. The treated sample was exposed to methanol vapor (0.01-0.10 kPa) for 2 hours at 260 °C. The system was cooled at room temperature under helium for 30 minutes and then heated at the rate of 4 °C min . Effluents were continuously analyzed using a quadruple mass spectrometer (type QMG420, Balzers AG). [Pg.173]

This study presents kinetic data obtained with a microreactor set-up both at atmospheric pressure and at high pressures up to 50 bar as a function of temperature and of the partial pressures from which power-law expressions and apparent activation energies are derived. An additional microreactor set-up equipped with a calibrated mass spectrometer was used for the isotopic exchange reaction (DER) N2 + N2 = 2 N2 and the transient kinetic experiments. The transient experiments comprised the temperature-programmed desorption (TPD) of N2 and H2. Furthermore, the interaction of N2 with Ru surfaces was monitored by means of temperature-programmed adsorption (TPA) using a dilute mixture of N2 in He. The kinetic data set is intended to serve as basis for a detailed microkinetic analysis of NH3 synthesis kinetics [10] following the concepts by Dumesic et al. [11]. [Pg.318]

Accessibility to Cu sites was determined by temperature programmed desorption of NO (NO TPD), using an experimental setup similar to that used for TPR, except the detector was a quadrupole mass spectrometer (Balzers QMS421) calibrated on standard mixtures. The samples were first activated in air at 673 K, cooled to room temperature in air, and saturated with NO (NO/He 1/99, vol/vol). They were then flushed with He until no NO could be detected in the effluent, and TPD was started up to 873 K at a heating rate of 10 K/min with an helium flow of 50 cm min. The amount of NO held on the surface was determined from the peak area of the TPD curves. [Pg.622]


See other pages where Spectrometer, desorption is mentioned: [Pg.197]    [Pg.298]    [Pg.2497]    [Pg.197]    [Pg.298]    [Pg.2497]    [Pg.311]    [Pg.1331]    [Pg.9]    [Pg.545]    [Pg.548]    [Pg.549]    [Pg.142]    [Pg.376]    [Pg.386]    [Pg.89]    [Pg.177]    [Pg.178]    [Pg.178]    [Pg.345]    [Pg.354]    [Pg.89]    [Pg.135]    [Pg.29]    [Pg.27]    [Pg.746]    [Pg.274]    [Pg.238]    [Pg.239]    [Pg.328]    [Pg.554]    [Pg.682]   
See also in sourсe #XX -- [ Pg.196 , Pg.197 ]




SEARCH



Laser desorption ionization-triple spectrometer

Laser-desorption mass spectrometer

Mass spectrometers desorption/ionization

Matrix-assisted laser desorption spectrometers

Plasma desorption mass spectrometer

The Plasma Desorption Mass Spectrometer

© 2024 chempedia.info