Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Description weight

In homopolymers all tire constituents (monomers) are identical, and hence tire interactions between tire monomers and between tire monomers and tire solvent have the same functional fonn. To describe tire shapes of a homopolymer (in the limit of large molecular weight) it is sufficient to model tire chain as a sequence of connected beads. Such a model can be used to describe tire shapes tliat a chain can adopt in various solvent conditions. A measure of shape is tire dimension of tire chain as a function of the degree of polymerization, N. If N is large tlien tire precise chemical details do not affect tire way tire size scales witli N [10]. In such a description a homopolymer is characterized in tenns of a single parameter tliat essentially characterizes tire effective interaction between tire beads, which is obtained by integrating over tire solvent coordinates. [Pg.2644]

Benzene has already been mentioned as a prime example of the inadequacy of a connection table description, as it cannot adequately be represented by a single valence bond structure. Consequently, whenever some property of an arbitrary molecule is accessed which is influenced by conjugation, the other possible resonance structures have to be at least generated and weighted. Attempts have already been made to derive adequate representations of r-electron systems [84, 85]. [Pg.65]

Before describing the chief methods by which the molecular weight of an organic compound in solution may be determined, a description is given of the Beckmann thermometer, and of the Tabloid Press, both of which are frequently used in the above determinations. [Pg.428]

It is particularly desirable to use MCSCF or MRCI if the HF wave function yield a poor qualitative description of the system. This can be determined by examining the weight of the HF reference determinant in a single-reference Cl calculation. If the HF determinant weight is less than about 0.9, then it is a poor description of the system, indicating the need for either a multiple-reference calculation or triple and quadruple excitations in a single-reference calculation. [Pg.24]

Rather than using transition state theory or trajectory calculations, it is possible to use a statistical description of reactions to compute the rate constant. There are a number of techniques that can be considered variants of the statistical adiabatic channel model (SACM). This is, in essence, the examination of many possible reaction paths, none of which would necessarily be seen in a trajectory calculation. By examining paths that are easier to determine than the trajectory path and giving them statistical weights, the whole potential energy surface is accounted for and the rate constant can be computed. [Pg.168]

Electron correlation is often very important as well. The presence of multiple bonding interactions, such as pi back bonding, makes coordination compounds more sensitive to correlation than organic compounds. In some cases, the HF wave function does not provide even a qualitatively correct description of the compound. If the weight of the reference determinant in a single-reference CISD calculation is less than about 0.9, then the HF wave function is not qualitatively correct. In such cases, multiple-determinant, MSCSF, CASPT2, or MRCI calculations tend to be the most efficient methods. The alternative is... [Pg.288]

Descriptive properties for a basic group of approximately 1400 inorganic compounds are compiled in Section 3. These follow a concise, revised introduction to inorganic nomenclature that follows the recommendations of the lUPAC published in 1990. In this section are given the exact atomic (or formula) weight of the elements accompanied, when available, by the uncertainty in the final figure given in parentheses. [Pg.1286]

In order for a soHd to bum it must be volatilized, because combustion is almost exclusively a gas-phase phenomenon. In the case of a polymer, this means that decomposition must occur. The decomposition begins in the soHd phase and may continue in the Hquid (melt) and gas phases. Decomposition produces low molecular weight chemical compounds that eventually enter the gas phase. Heat from combustion causes further decomposition and volatilization and, therefore, further combustion. Thus the burning of a soHd is like a chain reaction. For a compound to function as a flame retardant it must intermpt this cycle in some way. There are several mechanistic descriptions by which flame retardants modify flammabiUty. Each flame retardant actually functions by a combination of mechanisms. For example, metal hydroxides such as Al(OH)2 decompose endothermically (thermal quenching) to give water (inert gas dilution). In addition, in cases where up to 60 wt % of Al(OH)2 may be used, such as in polyolefins, the physical dilution effect cannot be ignored. [Pg.465]

Analytical Approaches. Different analytical techniques have been appHed to each fraction to determine its molecular composition. As the molecular weight increases, complexity increasingly shifts the level of analytical detail from quantification of most individual species in the naphtha to average molecular descriptions in the vacuum residuum. For the naphtha, classical techniques allow the isolation and identification of individual compounds by physical properties. Gas chromatographic (gc) resolution allows almost every compound having less than eight carbon atoms to be measured separately. The combination of gc with mass spectrometry (gc/ms) can be used for quantitation purposes when compounds are not well-resolved by gc. [Pg.167]

The total concentration or amount of chlorine-based oxidants is often expressed as available chorine or less frequendy as active chlorine. Available chlorine is the equivalent concentration or amount of Cl needed to make the oxidant according to equations 1—4. Active chlorine is the equivalent concentration or amount of Cl atoms that can accept two electrons. This is a convention, not a description of the reaction mechanism of the oxidant. Because Cl only accepts two electrons as does HOCl and monochloramines, it only has one active Cl atom according to the definition. Thus the active chlorine is always one-half of the available chlorine. The available chlorine is usually measured by iodomettic titration (7,8). The weight of available chlorine can also be calculated by equation 5. [Pg.142]

Solution Process. With the exception of fibrous triacetate, practically all cellulose acetate is manufactured by a solution process using sulfuric acid catalyst with acetic anhydride in an acetic acid solvent. An excellent description of this process is given (85). In the process (Fig. 8), cellulose (ca 400 kg) is treated with ca 1200 kg acetic anhydride in 1600 kg acetic acid solvent and 28—40 kg sulfuric acid (7—10% based on cellulose) as catalyst. During the exothermic reaction, the temperature is controlled at 40—45°C to minimize cellulose degradation. After the reaction solution becomes clear and fiber-free and the desired viscosity has been achieved, sufficient aqueous acetic acid (60—70% acid) is added to destroy the excess anhydride and provide 10—15% free water for hydrolysis. At this point, the sulfuric acid catalyst may be partially neutralized with calcium, magnesium, or sodium salts for better control of product molecular weight. [Pg.254]

In order to be consistent with normal usage, the particle-size distribution when this parameter is used should Be a straight line between approximately 10 percent cumulative weight and 90 percent cumulative weight. By giving the coefficient of variation ana the mean particle diameter, a description of the particle-size distribution is obtained which is normally satisfactory for most industrial purposes. If the product is removed from a mixed-suspension ciystallizer, this coeffi-... [Pg.1657]

A molecular dynamics force field is a convenient compilation of these data (see Chapter 2). The data may be used in a much simplified fonn (e.g., in the case of metric matrix distance geometry, all data are converted into lower and upper bounds on interatomic distances, which all have the same weight). Similar to the use of energy parameters in X-ray crystallography, the parameters need not reflect the dynamic behavior of the molecule. The force constants are chosen to avoid distortions of the molecule when experimental restraints are applied. Thus, the force constants on bond angle and planarity are a factor of 10-100 higher than in standard molecular dynamics force fields. Likewise, a detailed description of electrostatic and van der Waals interactions is not necessary and may not even be beneficial in calculating NMR strucmres. [Pg.257]


See other pages where Description weight is mentioned: [Pg.69]    [Pg.283]    [Pg.1500]    [Pg.672]    [Pg.36]    [Pg.324]    [Pg.69]    [Pg.283]    [Pg.1500]    [Pg.672]    [Pg.36]    [Pg.324]    [Pg.2521]    [Pg.276]    [Pg.18]    [Pg.141]    [Pg.71]    [Pg.1283]    [Pg.1286]    [Pg.34]    [Pg.43]    [Pg.67]    [Pg.203]    [Pg.265]    [Pg.381]    [Pg.147]    [Pg.316]    [Pg.35]    [Pg.113]    [Pg.7]    [Pg.6]    [Pg.462]    [Pg.473]    [Pg.655]    [Pg.1653]    [Pg.1823]    [Pg.1980]    [Pg.2573]    [Pg.188]    [Pg.111]    [Pg.262]    [Pg.419]    [Pg.216]    [Pg.26]   
See also in sourсe #XX -- [ Pg.102 , Pg.105 ]




SEARCH



Molecular weight description

© 2024 chempedia.info