Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Deoxyribonucleic acid 306 base sequences

Based on the deoxyribonucleic acid (DNA) sequence, what is the most likely amino acid or protein result, and how will it be manifest in a clinical setting ... [Pg.3]

This is a CE analog of conventional zone gel electrophoresis for the separation of macromolecules based on size. The capillary is filled with a porous polymer gel, and molecular sieving occurs as the molecules move through the gel, that is, separation is based on both electrophoretic mobility and molecular size. Very high resolution is achieved. The trend is to fill the capillary with a liquid gel matrix (pumpable gel solutions, such as deriyatized celluloses dissolved in the run buffer). This allows replacement of the gel in the capillary to eliminate contamination problems from the sample matrix that occurs with fixed gels.. This technique is widely used for separation of nucleotides in deoxyribonucleic acid (DNA) sequencing (Chapter 25). [Pg.639]

Genetic information, that is, instructions for protein synthesis, is carried in the deoxyribonucleic acids. Each sequence of three bases is a triplet code or codon, which controls the incorporation of specific amino acid into a growing protein chain or is a signal for the synthesis to terminate (see Section 30.3.1). The triplet code is a nonoverlapping type of code. [Pg.1032]

Since the discovery of the double hehcal structure of deoxyribonucleic acid (DNA) by Watson and Crick in 1953 [1], there has been considerable belief that the canonical right-handed B-DNA may adopt a wide range of different conformations depending on the nucleotide sequences and environmental conditions. This speculation turned out to be a reahty [2-10]. hi hving systems, the conformational flexibility of DNA resides primarily in the polymorphs of the DNA double hehx (including right-handed and left-handed double hehcal DNA) and occurs under various environmental conditions [4j. The main family of DNA forms identified, based on circular dichroic and... [Pg.156]

The discovery of the base-paired, double-helical structure of deoxyribonucleic acid (DNA) provides the theoretic framework for determining how the information coded into DNA sequences is replicated and how these sequences direct the synthesis of ribonucleic acid (RNA) and proteins. Already clinical medicine has taken advantage of many of these discoveries, and the future promises much more. For example, the biochemistry of the nucleic acids is central to an understanding of virus-induced diseases, the immune re-sponse, the mechanism of action of drugs and antibiotics, and the spectrum of inherited diseases. [Pg.215]

DNA (deoxyribonucleic acid) A double-stranded molecule held together by weak bonds between base pairs of nucleotides that encodes genetic information. The base sequence of each single strand can be deduced from that of its partner since base pairs form only between the bases A and T and between G and C. [Pg.533]

D.S. Kim, H.J. Park, H.M. Jung, J.K. Shin, Y.T. Jeong, P. Choi, J.H. Lee, and G. Lim, Field-effect transistor-based biomolecular sensor employing a Pt reference electrode for the detection of deoxyribonucleic acid sequence. Jpn, J. Appl. Phys. 43, 3855-3859 (2004). [Pg.233]

See also Deoxyribonucleic acid (DNA) base-pair sequencing of, 22 11 molecular structure of, 22 10 capillary electrophoresis, 4 636-637 chemical analysis of ancient, 5 750-751 contact print, 22 504 as a vaccine, 25 502-503... [Pg.285]

The nucleic acids known as deoxyribonucleic acid (DNA) are the molecules that store genetic information. This information is carried as a sequence of bases in the polymeric molecule. Remarkably, the interpretation of this sequence depends upon simple hydrogen bonding interactions between base pairs. Hydrogen bonding is fundamental to the double helix arrangement of the DNA molecule, and the translation and transcription via ribonucleic acid (RNA) of the genetic information present in the DNA molecule. [Pg.50]

DNA (deoxyribonucleic acid)—Carrier of genetic material that determines inheritance of traits. DNA is in chromosomes in every cell of the body except red blood cells and is copied when cells divide. DNA molecules are shaped like a double helix, and are composed of sequences of four bases adenosine (A), cytosine (C), guanine (G), and thymine (T). The sequence of the bases directs production of particular proteins by determining the sequence of amino acids in proteins. The double-helk structure of DNA helps it transmit genetic information. [Pg.152]

Nucleic Acid. A nucleic acid is a natural polynucleotide. It is a sugar-phosphate chain with purine and pyrimidine bases attached to it, as shown in Chart 10. If the sugar is deoxyribose and the pyrimidine bases are cytosine and thymine, the nucleic acid is deoxyribonucleic acid, DNA if the sugar is ribose, and the pyrimidine bases are (mostly) cytosine and uracil, the nucleic acid is ribonucleic acid, RNA. The sequence of bases may appear arbitrary and random, but it constitutes a meaningful code (see Code Word). In double-stranded nucleic acids,... [Pg.290]

What s DNA Deoxyribonucleic acid, the helical ladderlike chain of molecules that makes up genes. DNA consists of a sugar molecule called deoxyribose (it is somewhat related to glucose), a nitrogen-containing molecule called a base, and phosphate atoms bonded to the other two components. It is the sequence of base pairs (one base on each strand) in DNA that determines the end-product (e.g., protein). The human genome— the entire DNA content of a human being—contains approximately 3 billion base pairs. [Pg.38]

Deoxyribonucleic acid (DNA) The constituent of chromosomes which stores die hereditary information of an organism in the form of a sequence of nitrogenous bases. Much of this information relates to the synthesis of proteins, other agents. [Pg.230]

Livneh E, Tel-Or S, Sperling J, Elad D (1982) Light-induced free-radical reactions of purines and pyrimidines in deoxyribonucleic acid. Effect of structure and base sequence on reactivity. Biochemistry 21 3698-3703... [Pg.323]

Anti-deoxyribonucleic acid autoantibodies from human and mice suffering from Lupus erythematosus can penetrate into cells and accumulate in the cell nucleus. Based on the characteristics of a mi-ON A autoantibodies, VAYISRGGVSTYYSDTVKGRFTRQKYNKRA peptide (P3), which exhibits a-helix, has been used as a vector for the intracytoplasmic and intranuclear translocation of macromolecules (Table 16.7) (Avrameas et al., 1998, 1999). P3 shares similar capabilities with Antenapedia peptide (Derossi et al., 1994), but in contrast P3 operates only at 37 °C by an energy dependent mechanism. P3 linked to a 19 lysine residue sequence (K19-P3) forms complexes with plasmid DNA. Efficient transfection of mouse 3T3 cells and hamster lung CCL39 cells were obtained with these complexes. This transfection was not impaired by the presence of serum and did not require helper molecules such as chloroquine. These observations suggest that peptides from cell specific anti-DNA autoantibodies may represent a source of peptide-based gene delivery system with different specificities. [Pg.325]

As much of the terminology used in molecular biology may be unfamiliar to some readers, it is appropriate to define some of the vocabulary and this is given in an appendix to this chapter. There are two types of nucleic acids, the ribonucleic acids (RNA) and the deoxyribonucleic acids (DNA). Genetic information is carried in the linear sequence of nucleotides in DNA. Each molecule of DNA contains two complementary strands of deoxyribonucleotides which contain the purine bases, adenine and guanine and the pyrimidines, cytosine and thymine. RNA is single-stranded, being composed of a linear sequence of ribonucleotides the bases are the same as in DNA with the exception that thymine is replaced by the closely related base uracil. DNA replication occurs by the polymerisation of a new complementary strand on to each of the old strands. [Pg.140]


See other pages where Deoxyribonucleic acid 306 base sequences is mentioned: [Pg.247]    [Pg.534]    [Pg.247]    [Pg.42]    [Pg.57]    [Pg.50]    [Pg.240]    [Pg.440]    [Pg.532]    [Pg.327]    [Pg.334]    [Pg.61]    [Pg.371]    [Pg.330]    [Pg.39]    [Pg.46]    [Pg.165]    [Pg.193]    [Pg.47]    [Pg.113]    [Pg.346]    [Pg.176]    [Pg.203]    [Pg.413]    [Pg.240]    [Pg.474]    [Pg.712]    [Pg.778]    [Pg.178]    [Pg.416]    [Pg.226]    [Pg.477]    [Pg.113]    [Pg.107]    [Pg.6]   


SEARCH



Base Sequence

Deoxyribonucleic acid bases

Deoxyribonucleic acid sequence

Deoxyribonucleic acid sequencing

© 2024 chempedia.info