Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Denatured, polymers

The biologiccJ function of a protein or peptide is often intimately dependent upon the conformation(s) that the molecule can adopt. In contrast to most synthetic polymers where the individual molecules can adopt very different conformations, a protein usually exists in a single native state. These native states are found rmder conditions typically found in Uving cells (aqueous solvents near neutred pH at 20-40°C). Proteins can be unfolded (or denatured) using high-temperature, acidic or basic pH or certain non-aqueous solvents. However, this unfolding is often reversible cind so proteins can be folded back to their native structure in the laboratory. [Pg.525]

Guner A. and Kara M. Cloud points and temperatures of aqueous poly(N-vinyl-2-pyrrolidone) solutions in the presence of denaturing agents. Polymer 39, 8 9, 1569-1572,1998. [Pg.113]

The double-stranded structure of DNA can be separated into two component strands (melted) in solution by increasing the temperature or decreasing the salt concentration. Not only do the two stacks of bases puU apart but the bases themselves unstack while still connected in the polymer by the phosphodiester backbone. Concomitant with this denaturation of the DNA molecule is an increase in the optical absorbance of the purine and pyrimidine bases—a phenomenon referred to as hyperchromicity of denaturation. Because of the... [Pg.304]

Polymers of amino acids, like polymers of nucleic acids, have both ionic and hydrophobic character. Unlike the polymers of nucleic acids, amino acid polymers may carry either a negative or a positive (or zero) net charge, are far more subject to irreversible denaturation and oxidation, and are labile to... [Pg.242]

For instance, one would like to know the types of structures actually present in the native and denatured proteins.. .. The denatured protein in a good solvent such as urea is probably somewhat like a randomly coiled polymer, though the large optical rotation of denatured proteins in urea indicates that much local rigidity must be present in the chain (pg. 4). [Pg.17]

The changes in structure of denatured nuclease as a function of urea concentration (Fig. 3) suggest that, as hydrophobic interactions are weakened and the backbone becomes more highly solvated, the chain expands gradually. The data presented by Millet et al. in this volume suggest that this expansion does not continue asymptotically as predicted by simple polymer physical chemistry. This is the behavior expected for a polypeptide chain trapped in a small region of conformation space. Most, perhaps all, of the conformations accessible in the expanded denatured state may have a native-like topology. [Pg.43]

An excluded-volume random-coil conformation will be achieved when the solvent quality exceeds the theta point, the temperature or denatu-rant concentration at which the solvent-monomer interactions exactly balance the monomer—monomer interactions that cause the polymer to collapse into a globule under more benign solvent conditions. A number of lines of small-angle scattering—based evidence are consistent with the suggestion that typical chemical or thermal denaturation conditions are good solvents (i.e., are beyond the theta point) and thus that chemically or thermally unfolded proteins adopt a near random-coil conformation. [Pg.277]

The geometric properties of highly denatured states appear to be consistent with those expected for a random-coil polymer. For example, proteins unfolded at high temperatures or in high concentrations of denaturant invariably produce Kratky scattering profiles exhibiting the monotonic increase indicative of an expanded, coil-like conformation (Fig. 1) (Hagihara et al., 1998 see also Doniach et al., 1995). Consistent... [Pg.277]

The term ageing of polymers is usually reserved for long-term changes in properties of polymers exposed to weathering conditions. It may involve any of the above processes and include physical processes of polymer recrystallization and denaturation of, for example, protein structure in biopolymer chemistry. The term corrosion, used essentially for the deterioration (ageing) of metal... [Pg.452]

It should be pointed out that the addition of substances, which could improve the biocompatibility of sol-gel processing and the functional characteristics of the silica matrix, is practiced rather widely. Polyethylene glycol) is one of such additives [110— 113]. Enzyme stabilization was favored by formation of polyelectrolyte complexes with polymers. For example, an increase in the lactate oxidase and glycolate oxidase activity and lifetime took place when they were combined with poly(N-vinylimida-zole) and poly(ethyleneimine), respectively, prior to their immobilization [87,114]. To improve the functional efficiency of entrapped horseradish peroxidase, a graft copolymer of polyvinylimidazole and polyvinylpyridine was added [115,116]. As shown in Refs. [117,118], the denaturation of calcium-binding proteins, cod III parvalbumin and oncomodulin, in the course of sol-gel processing could be decreased by complexation with calcium cations. [Pg.85]

The immobilization of enzymes for sensing purposes frequently provides several important advantages an increase of its stability, operational reusability and greater efficiency in consecutive multistep reactions. Sometimes immobilization is accompanied by a certain degree of denaturalization however, the enzyme-matrix interactions may assist in stabilization preventing conformational transitions that favor such process. In some cases excessive bond formation affects the conformation of the active site and the steric hindrances caused by the polymer matrix may render an inactive sensor. [Pg.338]


See other pages where Denatured, polymers is mentioned: [Pg.23]    [Pg.149]    [Pg.23]    [Pg.149]    [Pg.2516]    [Pg.52]    [Pg.302]    [Pg.2060]    [Pg.2133]    [Pg.227]    [Pg.166]    [Pg.235]    [Pg.68]    [Pg.85]    [Pg.441]    [Pg.85]    [Pg.104]    [Pg.375]    [Pg.162]    [Pg.249]    [Pg.76]    [Pg.715]    [Pg.908]    [Pg.276]    [Pg.553]    [Pg.713]    [Pg.25]    [Pg.266]    [Pg.280]    [Pg.150]    [Pg.585]    [Pg.291]    [Pg.291]    [Pg.292]    [Pg.113]    [Pg.189]    [Pg.466]    [Pg.490]    [Pg.167]    [Pg.503]   
See also in sourсe #XX -- [ Pg.1197 ]




SEARCH



Denatured alcohol polymer

Poly denatured polymer

© 2024 chempedia.info