Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dehydrocyclization cycloalkanes

This article will deal with metal-catalyzed cyclization reactions, with reference to oxide and dual-function catalysts. Product cycles may contain five or six carbon atoms. The respective prefixes C5 and will point to the resulting structure (5). The term dehydrocyclization will be applied to reactions that end up with aromatic products the formation of saturated (cycloalkane) rings will henceforth be called cyclization. ... [Pg.274]

Catalytic reforming92-94 of naphthas occurs by way of carbocationic processes that permit skeletal rearrangement of alkanes and cycloalkanes, a conversion not possible in thermal reforming, which takes place via free radicals. Furthermore, dehydrocyclization of alkanes to aromatic hydrocarbons, the most important transformation in catalytic reforming, also involves carbocations and does not occur thermally. In addition to octane enhancement, catalytic reforming is an important source of aromatics (see BTX processing in Section 2.5.2) and hydrogen. It can also yield isobutane to be used in alkylation. [Pg.40]

The platforming catalyst was the first example of a reforming catalyst having two functions.43 44 93 100-103 The functions of this bifunctional catalyst consist of platinum-catalyzed reactions (dehydrogenation of cycloalkanes to aromatics, hydrogenation of olefins, and dehydrocyclization) and acid-catalyzed reactions (isomerization of alkanes and cycloalkanes). Hyrocracking is usually an undesirable reaction since it produces gaseous products. However, it may contribute to octane enhancement. n-Decane, for example, can hydrocrack to C3 and C7 hydrocarbons the latter is further transformed to aromatics. [Pg.41]

Catalytic reforming has become the most important process for the preparation of aromatics. The two major transformations that lead to aromatics are dehydrogenation of cyclohexanes and dehydrocyclization of alkanes. Additionally, isomerization of other cycloalkanes followed by dehydrogenation (dehydroisomerization) also contributes to aromatic formation. The catalysts that are able to perform these reactions are metal oxides (molybdena, chromia, alumina), noble metals, and zeolites. [Pg.51]

Skeletal rearrangements of cycloalkanes containing 9-18 carbon atoms were observed for the first time by Prelog et al. (162) on Pd/C catalysts at 400°C. Under these conditions, polycyclic aromatic and pseudoaromatic hydrocarbons are obtained (indene, azulene, naphthalene, phenanthrene, etc.). By carrying out the reaction on Pt/C under less drastic conditions, Kazanskii et al. (163) could observe the precursors of the aromatics as primary products. The latter are bicycloalkanes resulting from transannular 1-5 or 1-6 dehydrocyclizations (Scheme 84). For instance, cyclooctane yields... [Pg.68]

Data on rates of dehydrocyclization rD and cracking rc of n-heptane at 495°C and 14.6 atm are given in Table 5.2 for platinum-iridium on alumina and platinum-rhenium on alumina catalysts, and also for catalysts containing platinum or iridium alone on alumina (33). The rate rD refers to the rate of production of toluene and C7 cycloalkanes, the latter consisting primarily of methylcyclohexane and dimethylcyclopentanes. The rate of cracking is the rate of conversion of n-heptane to C6 and lower carbon number alkanes. [Pg.141]

The attractive features of platinum-rhenium and platinum-iridium catalysts can be combined in a reforming operation. The data for the reactions of selected hydrocarbons considered earlier for platinum-rhenium and platinum-iridium catalysts indicate that the former catalyst is more selective for the conversion of cycloalkanes to aromatics, while the latter is more selective for the dehydrocyclization of alkanes. Since cycloalkane conversion occurs primarily in the initial part of a reforming system while dehydrocyclization is the predominant reaction after the cycloalkanes have reacted, it is reasonable to use a platinum-rhenium catalyst in the front of the system and to follow it with a platinum-iridium catalyst (32). [Pg.150]

Straight-run gasoline is composed primarily of alkanes and cycloalkanes with only a small fraction of aromatics, and has a low ON of about 50. The ON is improved by catalytic reforming of n-paraffins and cycloalkanes into branched alkanes and aromatics. The main reactions are isomerization (w- to iso-), cycli-zation, dehydrogenation, and dehydrocyclization. The bifunctional catalyst has an acidic function to catalyze isomerization and cyclization and a dehydrogenation function that requires an active metal site. Typically, platinum is used as the metal and AI2O3 for the acidity. [Pg.651]


See other pages where Dehydrocyclization cycloalkanes is mentioned: [Pg.281]    [Pg.39]    [Pg.40]    [Pg.268]    [Pg.70]    [Pg.141]    [Pg.397]    [Pg.905]    [Pg.222]    [Pg.303]   
See also in sourсe #XX -- [ Pg.69 ]




SEARCH



Cycloalkan

Cycloalkanes

Dehydrocyclization

© 2024 chempedia.info