Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Decay rate kinetics

For example, supported TiCl4/MgCl2 catalysts show a short period of acceleration, followed by a prolonged steady period 92,93). However, in the presence of electron donors, they may show the typical decay rate kinetics observed during propylene polymerization 93). Bulk catalysts prepared by interaction of TiCU with Mg(OR)2 show either a stationary rate, or a non-stationary rate, according to the titanium content 88,94). Bulk catalysts prepared by reduction of TiCl4 with organomagnesium compounds show a decay type rate 92-95>. [Pg.30]

The first detailed investigation of the reaction kinetics was reported in 1984 (68). The reaction of bis(pentachlorophenyl) oxalate [1173-75-7] (PCPO) and hydrogen peroxide cataly2ed by sodium saUcylate in chlorobenzene produced chemiluminescence from diphenylamine (DPA) as a simple time—intensity profile from which a chemiluminescence decay rate constant could be determined. These studies demonstrated a first-order dependence for both PCPO and hydrogen peroxide and a zero-order dependence on the fluorescer in accord with an earher study (9). Furthermore, the chemiluminescence quantum efficiencies Qc) are dependent on the ease of oxidation of the fluorescer, an unstable, short-hved intermediate (r = 0.5 /is) serves as the chemical activator, and such a short-hved species "is not consistent with attempts to identify a relatively stable dioxetane as the intermediate" (68). [Pg.266]

To interpret the magnitude of the PIA signal, the rale equation for the photogeneration of states will be discussed. It describes the change of the number of states, n, with respect to time, /, depending on the generation rate kp (A=const., excitation density) and the decay rate In1 /=inverse lifetime, (/reorder of kinetics) and can be written as follows ... [Pg.467]

Like other spiropyrans, the colored form of spirooxazines generated by UV irradiation, reconverts to the colorless form. However, it is possible to measure the thermal decay rates and activation energies at ambient temperature, since this fading reaction obeys first-order kinetics in solution. The thermal decay rate constant for spiroindolinonaphthooxazine has been found to be 0.02-0.15s 1 in ethanol and 0.1-1.4s 1 in toluene, although this may vary according to the substituent groups.72,77 However, these values are smaller than those of the spironaphthopyran series. [Pg.34]

Both Porter s original flash photolysis apparatus and Pimentel s rapid scan spectrometer recorded the whole spectral region in a time which was short compared to the decay of the transient species. Kinetic information was obtained by repeatedly firing the photolytic flash lamp and making each spectroscopic measurement at a different time delay after each flash. The decay rate could then be extracted from this series of delayed spectra. Such a process clearly has limitations, particularly for IR measurements, where the decay must be slow compared to the scan rate of the spectrum. [Pg.289]

Indeed, the (200-fs) laser excitation of the EDA complexes of various benz-pinacols with methyl viologen (MV2+) confirms the formation of all the transient species in equation (59). A careful kinetic analysis of the decay rates of pinacol cation radical and reduced methyl viologen leads to the conclusion that the ultrafast C—C bond cleavage (kc c = 1010 to 1011 s- ) of the various pinacol cation radicals competes effectively with the back electron transfer in the reactive ion pair. [Pg.256]

Furthermore, kinetic analysis of the decay rate of anthracene cation radical, together with quantum yield measurements, establishes that the ion-radical pair in equation (76) is the critical reactive intermediate in osmylation reaction. Subsequent rapid ion-pair collapse then leads to the osmium adduct with a rate constant k 109 s 1 in competition with back electron-transfer, i.e.,... [Pg.273]

In addition to conventional measured parameters (peak height or area under the CL response signal), one can use typically kinetic parameters such as CL formation and decay rates, both of which are directly related to the analyte concentration. These parameters can be easily determined from the straight segments of the rising and falling portions of the response curve, using a computer to acquire and process data. These alternative kinetic parameters result in improved selectivity and precision in CL analyses, as shown in Sec. 3.2. [Pg.179]

The Rothamsted Carbon Model (RothC) uses a five pool structure, decomposable plant material (DPM), resistant plant materials (RPM), microbial biomass, humified organic matter, and inert organic matter to assess carbon turnover (Coleman and Jenkinson 1996 Guo et al. 2007). The first four pools decompose by first-order kinetics. The decay rate constants are modified by temperature, soil moisture, and indirectly by clay content. RothC does not include a plant growth sub-module, and therefore NHC inputs must be known, estimated, or calculated by inverse modeling. Skjemstad et al. (2004) tested an approach for populating the different pools based on measured values. [Pg.194]

The dispersion relations of the five hydrodynamic modes are depicted in Fig. 1. Beyond the hydrodynamic modes, there may exist kinetic modes that are not associated with conservation laws so that their decay rate does not vanish with the wavenumber. These kinetic modes are not described by the hydrodynamic equations but by the Boltzmann equation in dilute fluids. The decay rates of the kinetic modes are of the order of magnitude of the inverse of the intercollisional time. [Pg.88]

The rate of Sc -promoted photoinduced electron transfer from Ceo to CI4Q determined from the decay rate of the absorbance due to Ceo at 740 nm (inset of Fig. 11) obeys pseudo-first-order kinetics and the pseudo-first-order rate constant increases linearly with increasing the p-chloranil concentration [CI4Q] [135]. From the slope of the linear correlation, the second-order rate constant of electron transfer ( et) in Scheme 15 was obtained. The A et value increases linearly with increasing the Sc + concentration. This indicates that CUQ produced in the photoinduced electron transfer forms a 1 1 complex with Sc + (Scheme 15) [78]. When CI4Q is replaced by p-benzoquinone (Q), the value for electron transfer from Ceo to Q increases with an increase in [Sc " ] to exhibit a first-order dependence on [Sc ] at low concentrations, changing to a second-order dependence at high concentrations, as shown in Fig. 13 (open circles) [135]. Such a mixture of first-order and second-order dependence on [Sc ] was also observed in electron transfer from CoTPP (TPP = tetraphenylporphyrin dianion) to Q... [Pg.265]

The kinetic decay rate constant of the y-triplet level determined by ESE measurements and reported in Table I can be converted to the equivalent lifetime. This lifetime equals 1 05 ms for TPP in a 1 1 mixture of toluene and ethanol as the solvent. This is consistent with ODMR measurements (13) of the same level for TPP in n-octane where the lifetime equaled 1.45 ms. [Pg.138]

In kinetic analysis of complex reactions, 210, 382 fluorescence decay rate distributions, 210, 357 implementation in Laplace de-convolution noniterative method, 210, 293 in multiexponential decays, 210, 296 partial global analysis by simulated annealing methods, 210, 365 spectral resolution, 210, 299. [Pg.311]

The value of the critical nuclearity allowing the transfer from the monitor depends on the redox potential of this selected donor S . The induction time and the donor decay rate both depend on the initial concentrations of metal atoms and of the donor [31,62]. The critical nuclearity corresponding to the potential threshold imposed by the donor and the transfer rate constant value, which is supposed to be independent of n, are derived from the fitting between the kinetics of the experimental donor decay rates under various conditions and numerical simulations through adjusted parameters (Fig. 5) [54]. By changing the reference potential in a series of redox monitors, the dependence of the silver cluster potential on the nuclearity was obtained (Fig. 6 and Table 5) [26,63]. [Pg.586]

Figure 1 Transient absorption spectra of c-S and t-S (S = r -4 ) recorded at time t after eT during PR of c-S and t-S (S = 1-4) with [S] = 5.0 x 10 M in DCE at r.t. Insets kinetic traces illustrating the time profiles of the D2 band at 1 as a function of t. Both t and the observed decay rate constant (kobs) and are mentioned in the figure. Figure 1 Transient absorption spectra of c-S and t-S (S = r -4 ) recorded at time t after eT during PR of c-S and t-S (S = 1-4) with [S] = 5.0 x 10 M in DCE at r.t. Insets kinetic traces illustrating the time profiles of the D2 band at 1 as a function of t. Both t and the observed decay rate constant (kobs) and are mentioned in the figure.
When oxygen is removed from a reaction solution of tetrakis-(dimethylamino)ethylene (TMAE), the chemiluminescence decays slowly enough to permit rate studies. The decay rate constant is pseudo-first-order and depends upon TMAE and 1-octanol concentrations. The kinetics of decay fit the mechanism proposed earlier for the steady-state reaction. The elementary rate constant for the dimerization of TMAE with TMAE2+ is obtained. This dimerization catalyzes the decomposition of the autoxidation intermediate. [Pg.236]

In Chapter 12, the concept of half-life was used in connection with the time it took for reactants to change into products during a chemical reaction. Radioactive decay follows first order kinetics (Chapter 12). First order kinetics means that the decay rate... [Pg.244]

The absorption band around 520 nm is very similar to that of polystyrene excimer (2,3,5). The decay follows first order kinetics with a lifetime of 20 ns. The decay rate agrees with that of the excimer fluorescence and excimer absorption. The longer life absorptions, attributed to the triplet states and free radicals (2,5), were observed at wave lengths <400 nm, although the anionic species of polystyrene with the absorption maximum at 410 nm as seen in solid films (cf. Figure 5) was not observed. Figure 9 shows the absorption spectrum observed in the pulse radiolysis of CMS solution in cyclohexane. [Pg.157]


See other pages where Decay rate kinetics is mentioned: [Pg.929]    [Pg.1357]    [Pg.423]    [Pg.430]    [Pg.430]    [Pg.436]    [Pg.437]    [Pg.55]    [Pg.62]    [Pg.67]    [Pg.378]    [Pg.178]    [Pg.103]    [Pg.146]    [Pg.28]    [Pg.72]    [Pg.90]    [Pg.101]    [Pg.102]    [Pg.79]    [Pg.132]    [Pg.132]    [Pg.51]    [Pg.1258]    [Pg.286]    [Pg.323]    [Pg.132]    [Pg.443]    [Pg.1258]    [Pg.231]    [Pg.543]    [Pg.424]   
See also in sourсe #XX -- [ Pg.30 ]




SEARCH



Decay kinetics

Decay, kinetic

Kinetic rates

Mass transport rate-decay kinetics

Rate Kinetics

© 2024 chempedia.info