Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Deactivation correlations

Figure IB displays relative catalytic activity (RA) - in terms of pseudo first-order rate constants, corrected for coke content, related to the fresh, sulfided catalyst vs carbon content. The individual HDS, HVD and CNH activities all decrease with increasing carbon content, the order of deactivation being HYD < HDS < CNH. (The results for relative HDN activities followed closely those of CNH, and are not shown). Relative activities fall off less sharply as coke content increases. Because of the limited set and scatter of the data, a definitive deactivation correlation could not be obtained. Best fit curves to the data were constructed from a power-deactivation equation in C (1), and are shown by the solid curves in Fig. IB. Figure IB displays relative catalytic activity (RA) - in terms of pseudo first-order rate constants, corrected for coke content, related to the fresh, sulfided catalyst vs carbon content. The individual HDS, HVD and CNH activities all decrease with increasing carbon content, the order of deactivation being HYD < HDS < CNH. (The results for relative HDN activities followed closely those of CNH, and are not shown). Relative activities fall off less sharply as coke content increases. Because of the limited set and scatter of the data, a definitive deactivation correlation could not be obtained. Best fit curves to the data were constructed from a power-deactivation equation in C (1), and are shown by the solid curves in Fig. IB.
The deactivation of methanol-synthesis catalyst was studied in laboratory and pilot-plant slurry reactors using a concentrated, poison-free, CO-rich feedstream. The extent of catalyst deactivation correlated with the loss of BET surface area. A model of catalyst deactivation as a function of temperature and time was developed from experimental data. The model suggested that continuous catalyst addition and withdrawal, rather than temperature programming, was the best way to maintain a constant rate of methanol production as the catalyst ages. Catalyst addition and withdrawal was demonstrated in the pilot plant. [Pg.349]

In Fig. 7, the do values obtained for MgO, AI2O3 and MgyAlOx oxides were plotted as a function of the density of basic sites, nb (Table 1). It is observed that the initial deactivation correlates linearly with the density of basic sites. No correlation was found between the NH3 site density (n,. Table 1) and do. These results show that although Mg AlOx oxides promote the selfcondensation of acetone by both acid- and base-catalyzed pathways (Fig. 2), the initial deactivation rate is essentially related to the surface basic properties. This dependence of do with nb for MgyAlOx oxides probably reflects the fact that the acetone oligomerization rate decline is significantly higher when coke poisons very active basic Mg-0 pairs than when eliminates moderately active acidic Al-0 pairs. [Pg.309]

The specific rate is expected to have an Arrhenius dependence on temperature. Deactivation by coke deposition in cracking processes apparently has this kind of correlation. [Pg.2097]

Illuminati et al. have also investigated the methoxydechlorination of 4-substituted-2- and 2-substituted-4-chloroquinolines. The relation between the reaction site, the 2- or 4-position, and the substituent in the 4- or 2-position, respectively, is always meta. The authors found the two reaction series well correlated with one another, but diverging quite seriously from the Hammett correlation. They concluded that mesomerically electron-donating substituents, because of the importance of resonance structures like 12 and 13, are more deactivating than expected, while electron-withdrawing substituents, and even the methyl group, seem to follow normal a correlation. [Pg.250]

A wide range of nitroxidcs and derived alkoxyamincs has now been explored for application in NMP. Experimental work and theoretical studies have been carried out to establish structure-property correlations and provide further understanding of the kinetics and mechanism. Important parameters are the value of the activation-deactivation equilibrium constant K and the values of kaa and (Scheme 9.17), the combination disproportionation ratio for the reaction of the nilroxide with Ihe propagating radical (Section 9.3.6.3) and the intrinsic stability of the nitroxide and the alkoxyamine under the polymerization conditions (Section 9.3.6.4). The values of K, k3Cl and ktieact are influenced by several factors.11-1 "7-"9 ... [Pg.472]

Some radicals (e.g., tert-butyl, benzyl, and cyclopropyl), are nucleophilic (they tend to abstract electron-poor hydrogen atoms). The phenyl radical appears to have a very small degree of nucleophilic character. " For longer chains, the field effect continues, and the P position is also deactivated to attack by halogen, though much less so than the a position. We have already mentioned (p. 896) that abstraction of an a hydrogen atom from ring-substituted toluenes can be correlated by the Hammett equation. [Pg.903]

The kinetic parameters are listed in Table 1. The linearity of lnAr l/r plot is revealed by the correlation coefficient. For all reactions but the deactivation, the rate constants follow the Arrhenius law satisfactorily, implying catalyst deactivation may involve more than one elementary steps. [Pg.335]

Several mechanisms have been proposed to explain the activation of carbon surfaces. These have Included the removal of surface contaminants that hinder electron transfer, an Increase In surface area due to ralcro-roughenlng or bulld-up of a thin porous layer, and an Increase In the concentrations of surface functional groups that mediate electron transfer. Electrode deactivation has been correlated with an unintentional Introduction of surface contaminants (15). Improved electrode responses have been observed to follow treatments which Increase the concentration of carbon-oxygen functional groups on the surface (7-8,16). In some cases, the latter were correlated with the presence of electrochemical surface waves (16-17). However, none of the above reports discuss other possible mechanisms of activation which could be responsible for the effects observed. [Pg.583]

Studies of octylsilane (OS) phases, deactivated by end-capping, have shown that such stationary phases lead to a discrimination between compounds according to their H-bond donor capacity, as the stationary phase presents strong accessible H-bond acceptor groups (-Si-O-Si-) [22, 23]. For OS phases with a uniform matrix of cross-Hnked polysiloxane alkyl groups, relatively low correlations between log few and log Poet were found. [Pg.335]

The activation observed in titania-supported Au electrocatalysts is unlikely to arise from electronic effects in monolayer or bilayer Au [Valden et al., 1998 Chen and Goodman, 2004], since the electrocatalytic activity was correlated with the size of three-dimensional titania-supported Au particles [Guerin et al., 2006b Hayden et al., 2007a, c]. The possibility that titania-induced electronic modification of three-dimensional particles below 6.5 nm is responsible for the induced activity, however, could not be excluded. It was pointed out, though, that such electronic effects should dominate for the smaller particle regime (<3 nm), where deactivation of the Au is observed on all supports. [Pg.585]

It is not possible to determine from A atr ) alone whether the polymerization will be controlled fast activation and more importantly fast deactivation are required to achieve good control over polymer molecular weights and molecular weight distributions. Therefore, precise measurements of the activation (kj and deactivation (kj rate constants should be used for correlation with catalyst, alkyl halide, and monomer structures. [Pg.239]


See other pages where Deactivation correlations is mentioned: [Pg.73]    [Pg.35]    [Pg.867]    [Pg.35]    [Pg.874]    [Pg.345]    [Pg.120]    [Pg.73]    [Pg.35]    [Pg.867]    [Pg.35]    [Pg.874]    [Pg.345]    [Pg.120]    [Pg.2420]    [Pg.403]    [Pg.571]    [Pg.999]    [Pg.199]    [Pg.561]    [Pg.290]    [Pg.369]    [Pg.382]    [Pg.255]    [Pg.692]    [Pg.692]    [Pg.1386]    [Pg.95]    [Pg.103]    [Pg.109]    [Pg.558]    [Pg.417]    [Pg.583]    [Pg.330]    [Pg.354]    [Pg.266]    [Pg.89]    [Pg.111]    [Pg.44]    [Pg.200]    [Pg.235]    [Pg.237]    [Pg.241]    [Pg.241]   
See also in sourсe #XX -- [ Pg.216 , Pg.218 ]




SEARCH



© 2024 chempedia.info