Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloreversion, radical cations

This same CIDNP study also ruled out the existence of the bishomo-aromatic system [158c] by finding two distinct species, [158a] and [158b], for the intramolecular cycloreversion of the radical cation of quadricyclane to that of norbornadiene. [Pg.319]

Cleavage of a C—C bond gives a distonic radical cation as an intermediate, while concerted cleavage of two C—C bonds yields the corresponding ArO and ArO in cycloreversion of aryl-substituted cyclobutane Therefore, the cycloreversion mechanism is related to dimerization of ArO where tt- and a-dimers are detected during PR of ArO such as... [Pg.656]

Remarkable enhancements of the unimolecular c-t isomerization of c-S with p-MeO and oxidation of S with -MeO are explained by charge-spin separation in such S Unimolecular c-t isomerization of such c-S proceeds with a chain mechanism, while regioselective oxidation occurs in such S because of the spin localization. Cycloreversion of t,c,t-TPCB occurs to give a a-St 2, while the photochemical cycloreversion of TPCB and t,t,t-TPCB gives Tr-St 2 and t-St /t-St pair, respectively. Radical cations of phosphorus compounds (9 and 10 form intramolecular rr-dimer between two Nps from which Np 2 forms. Formation of intermolecular a-dimer of aromatic acetylene (11 - and 12 -) and intramolecular dimer of 13 and diarylmethanoT was observed, and the n = 3 rule is not effective for intramolecular dimer -. [Pg.691]

Intramolecular bond formations include (net) [2 + 2] cycloadditions for example, diolefin 52, containing two double bonds in close proximity, forms the cage structure 53. This intramolecular bond formation is a notable reversal of the more general cycloreversion of cyclobutane type olefin dimers (e.g., 15 + to 16 +). The cycloaddition occurs only in polar solvents and has a quantum yield greater than unity. In analogy to several cycloreversions these results were interpreted in terms of a free radical cation chain mechanism. [Pg.237]

The mechanism of the cycloaddition appears to be concerted for various reagents however, for several cases, radical cation cycloaddition-cycloreversions have a stepwise component. For example, CIDNP effects observed during the PET induced dimerization of spiro[2.4]heptadiene (97) identify a dimer radical cation with spin density only on two carbons of the dienophile fragment this intermediate must be a doubly linked radical cation ( 99 + 282,283 pulsed laser experiment at high concentrations of 97 supports a second dimer radical cation at high... [Pg.248]

However, only limited experimental evidence is available concerning the key step of the dimerization, i,e. the addition of the radical cation to the parent olefin. Does this addition occur stepwise or in concerted fashion Does the radical cation serve as a the diene component ([3 + 2]cycloaddition) or as dienophile ([4+ l]cy-cloaddition) The observed retention of dienophile stereochemistry and orbital symmetry arguments (Fig. 7) favor the [4 + l]cycloaddition type. Although it is difficult to distinguish the [3 + 2] from the [4 + l]addition type, a stepwise component for the cycloaddition and the complementary cycloreversion has been established in at least one system, viz., spiro[2.4]heptadiene. [Pg.157]

The electron transfer induced reaction of this diene system results in rapid [4 + 2]dimerization conversely, the dimer rapidly undergoes cycloreversion upon electron transfer. Both reactions result in strong CIDNP effects. The monomer polarization supports a radical cation with a spin density distribution like those of the butadiene or fulvene radical cations. The dimer polarization identifies a dimer radical cation with appreciable spin density only on two carbons of the dienophile fragment this species can only be the doubly linked radical cation D [135, 136], Significantly, a second dimer radical cation is implicated in a pulsed... [Pg.157]

Among the electron transfer induced reactions of cyclobutane systems, cycloreversions are the most prominent. These reactions are the reverse of the cycloadditions discussed in Sect. 4.1. The reactivity of the corresponding radical cations depends on their substitution pattern. We have mentioned the fast two-bond cycloreversion of quadicyclane radical cation as well as the ready ring closure of a tetracyclic system (3, Sect. 4.1). A related fragmentation of cis-, trans-, cis-1,2,3,4-tetraphenylcyclobutane (84) can be induced by pulse radiolysis of 1,2-dichloro-ethane solutions. This reaction produces the known spectrum of trans-stilbene radical cation (85) without a detectable intermediate and with a high degree of... [Pg.185]

The cycloreversion of the cyclobutane radical cation Pyr +oPyr could proceed in either a concerted or stepwise manner, and many attempts were made to determine the mechanism of this cleavage step. Because the radical cation is delocalized, it is not unreasonable that both the C(5)-C(5 ) and the C(6)-C(6 ) bonds are weakened by oxidation of PyroPyr. The observation of a substantial secondary deuterium isotope effect for the cleavage of the first bond [C(6)-C(6 )] and a small isotope effect for the cleavage of the second bond [C(5)-C(5 )] in various deu-terated uracil-derived cyclobutane dimers was, however, taken as an indication of a stepwise splitting mechanism via the distonic radical cation Pyr+-Pyr [9]. Theoretical studies performed by Rosch, Michel-Beyerle et al. also strongly support the assumption of a successive cycloreversion [10]. [Pg.357]

Whereas a [2 + 2] pericyclic reaction is essentially forbidden in the ground state, a [2+1] open-shell reaction is feasible. In this respect, the radical cations detected in this context represent distinct stages of pericyclic, radical-cation catalyzed cycloaddi-tions/cycloreversions. In Fig. 7.11, three distinct stages, a tight (cyclobutane-like), an extended (bis ethene), and a trapezoid, of a hole- (or radical-cation) catalyzed cycloaddition/cycloreversion are presented in a schematic way. °... [Pg.151]

For pagodane-related carbon skeletons 4C/3e radical cations with tight and extended geometries could be established by spectroscopy (predominately EPR) and quantum chemical calculations at the DFT level of theory. Such structures resemble frozen stages of cycloadditions/cycloreversions on the hyper energy surface of the hole-catalyzed cyclobutane formation. [Pg.154]

The major fragmentation pathway of the radical cation 51 generated from the corresponding Czv -symmetrical dithiolane 51 was 1,3-cycloreversion, which led to the generation of two fragments, radical cations 52 and 53 (Scheme 3). The radical cation 54 is present in MS spectra of nearly all dithiolanes of type 51. The radical cation 54 lost the fragments SH or CeHs to form 50 or 55, respectively <2000EJ01695>. [Pg.967]

The extensive mass spectral studies of the triafulvenes have been summarized The radical cation of 85 is observed in the mass spectrum of methylenecyclopropene and is the most stable C4H4 species . By analogy with cyclopropenones fragment ions derived from cycloreversion to alkynes are often observed. [Pg.1314]

Polyelectrolytes and soluble polymers containing triarylamine monomers have been applied successfully for the indirect electrochemical oxidation of benzylic alcohols to the benzaldehydes. With the triarylamine polyelectrolyte systems, no additional supporting electrolyte was necessary [91]. Polymer-coated electrodes containing triarylamine redox centers have also been generated either by coating of the electrode with poly(4-vinyltri-arylamine) films [92], or by electrochemical polymerization of 4-vinyl- or 4-(l-hydroxy-ethyl) triarylamines [93], or pyrrol- or aniline-linked triarylamines [94], Triarylamine radical cations are also suitable to induce pericyclic reactions via olefin radical cations in the form of an electron-transfer chain reaction. These include radical cation cycloadditions [95], dioxetane [96] and endoperoxide formation [97], and cycloreversion reactions [98]. [Pg.558]

The interconversion of butadiene radical cations and ionized cyclobutene represents a model case for a formal pericyclic process. Much work has been invested to study not only the distinguishability of these isomers and their derivatives by mass spectrometry, but also to check the role of orbital symmetry in the ionic species. Hass has addressed the latter problem in depth in a review on pericyclic reactions in radical cations in both the gas and condensed phases and no further survey on the papers mentioned there will be given here. The topic pertains also to the ring-opening of ionized benzocyclobutene to ionized ortho-quinodimethane (cf Section V) and various otha- phenyl-, methyl- and carboxy-substituted derivatives. In this context, we restrict ourselves hwe mentioning that an upper limit of 7 kcalmol only has been detemined by CE mass spectrometry for the activation barrier of the cycloreversion of the parent cyclobutene radical cations. The energy requirement for the cycloreversion of ionized 1- and 3-substituted cyclobutenes were found, by experiment, to be markedly different. Obviously, dissociation of the (in a sense bis-allylic) strained C—C bond is much more facile when the substituent is at C-3,... [Pg.16]

Hollander s theory [41] of pair substitution, they concluded that an open chain or extended radical cation 28 + must precede a closed radical cation 291 + in which spin and charge are localized in an aromatic moiety with the reverse sequence of intermediates, which would perhaps appear more natural from the point of view of chemical intuition, the experimental polarization pattern could not be simulated. Based on their analysis, they obtained a rate constant of 4 x 10s s 1 for the transformation 28 + -> 29 +. Related cycloreversions of biological significance (photosensitized splitting of pyrimidine dimers) are dealt with in Section V.G.2. [Pg.136]

The sensitizer dependency for the cycloreversion of tra/7, raf7 -2,3-diphenyl-4-methyloxetane has been studied. When chloranil is used as the sensitizer, the reaction proceeds via the radical cation of tr<3f7 -(3-methylstyrene, while with pyrylium salts the trans- iiXhQxvQ radical cation is involved.Other work in this area has examined the cycloreversion of the oxetanes (34) using (35) or chloranil as the sensitizers. ... [Pg.16]


See other pages where Cycloreversion, radical cations is mentioned: [Pg.305]    [Pg.16]    [Pg.17]    [Pg.32]    [Pg.35]    [Pg.181]    [Pg.287]    [Pg.656]    [Pg.88]    [Pg.292]    [Pg.241]    [Pg.132]    [Pg.151]    [Pg.154]    [Pg.227]    [Pg.327]    [Pg.370]    [Pg.361]    [Pg.111]    [Pg.775]    [Pg.16]    [Pg.17]    [Pg.32]    [Pg.35]    [Pg.17]    [Pg.32]    [Pg.35]    [Pg.130]    [Pg.467]    [Pg.135]    [Pg.142]    [Pg.161]    [Pg.162]   
See also in sourсe #XX -- [ Pg.237 , Pg.238 ]




SEARCH



Cycloreversions

Radical cation reactions cycloreversion

© 2024 chempedia.info